Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 52, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027657

ABSTRACT

Disorders of the eye leading to visual impairment are a major issue that affects millions of people. On the other side ocular toxicities were described for e.g. molecularly targeted therapies in oncology and may hamper their development. Current ocular model systems feature a number of limitations affecting human-relevance and availability. To find new options for pharmacological treatment and assess mechanisms of toxicity, hence, novel complex model systems that are human-relevant and readily available are urgently required. Here, we report the development of a human immunocompetent Choroid-on-Chip (CoC), a human cell-based in vitro model of the choroid layer of the eye integrating melanocytes and microvascular endothelial cells, covered by a layer of retinal pigmented epithelial cells. Immunocompetence is achieved by perfusion of peripheral immune cells. We demonstrate controlled immune cell recruitment into the stromal compartments through a vascular monolayer and in vivo-like cytokine release profiles. To investigate applicability for both efficacy testing of immunosuppressive compounds as well as safety profiling of immunoactivating antibodies, we exposed the CoCs to cyclosporine and tested CD3 bispecific antibodies.


Subject(s)
Biological Products/pharmacology , Choroid/drug effects , Endothelial Cells/drug effects , Microchip Analytical Procedures , Antibodies, Bispecific/drug effects , Antibodies, Bispecific/metabolism , Humans , Melanocytes/drug effects , Melanocytes/metabolism
3.
Sci Rep ; 9(1): 12402, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455800

ABSTRACT

Semisynthetic cephalosporins are widely used antibiotics currently produced by different chemical steps under harsh conditions, which results in a considerable amount of toxic waste. Biocatalytic synthesis by the cephalosporin acylase from Pseudomonas sp. strain N176 is a promising alternative. Despite intensive engineering of the enzyme, the catalytic activity is still too low for a commercially viable process. To identify the bottlenecks which limit the success of protein engineering efforts, a series of MD simulations was performed to study for two acylase variants (WT, M6) the access of the substrate cephalosporin C from the bulk to the active site and the stability of the enzyme-substrate complex. In both variants, cephalosporin C was binding to a non-productive substrate binding site (E86α, S369ß, S460ß) at the entrance to the binding pocket, preventing substrate access. A second non-productive binding site (G372ß, W376ß, L457ß) was identified within the binding pocket, which competes with the active site for substrate binding. Noteworthy, substrate binding to the protein surface followed a Langmuir model resulting in binding constants K = 7.4 and 9.2 mM for WT and M6, respectively, which were similar to the experimentally determined Michaelis constants KM = 11.0 and 8.1 mM, respectively.


Subject(s)
Bacterial Proteins/metabolism , Penicillin Amidase/metabolism , Pseudomonas/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Biocatalysis , Catalytic Domain , Cephalosporins/chemistry , Cephalosporins/metabolism , Kinetics , Molecular Dynamics Simulation , Penicillin Amidase/chemistry , Penicillin Amidase/genetics , Protein Engineering , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...