Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 112(2): e35383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345152

ABSTRACT

To obtain bone allografts that are safe for transplantation, several processing steps for decellularization and decontamination have to be applied. Currently available processing methods, although well-established, may interfere with the biomechanical properties of the bone. High hydrostatic pressure (HHP) is known to devitalize tissues effectively while leaving the extracellular matrix intact. However, little is known about the inactivation of the contaminating microorganisms by HHP. This study aims to investigate the ability of high-pressure decontamination and to establish a treatment protocol that is able to successfully inactivate microorganisms with the final goal to sterilize bone specimens. Using Escherichia coli (E. coli) as a model organism, HHP treatment parameters like temperature and duration, pressurization medium, and the number of treatment cycles were systematically adjusted to maximize the efficiency of inactivating logarithmic and stationary phase bacteria. Towards that we quantified colony-forming units (cfu) after treatment and investigated morphological changes via Field Emission Scanning Electron Microscopy (FESEM). Additionally, we tested the decontamination efficiency of HHP in bovine cancellous bone blocks that were contaminated with bacteria. Finally, two further model organisms were evaluated, namely Pseudomonas fluorescens as a Gram-negative microorganism and Micrococcus luteus as a Gram-positive representative. A HHP protocol, using 350 MPa, was able to sterilize a suspension of stationary phase E. coli, leading to a logarithmic reduction factor (log RF) of at least -7.99 (±0.43). The decontamination of bone blocks was less successful, indicating a protective effect of the surrounding tissue. Sterilization of 100% of the samples was achieved when a protocol optimized in terms of treatment temperature, duration, pressurization medium, and number and/or interval of cycles, respectively, was applied to bone blocks artificially contaminated with a suspension containing 104 cfu/mL. Hence, we here successfully established protocols for inactivating Gram-negative model microorganisms by HHP of up to 350 MPa, while pressure levels of 600 MPa were needed to inactivate the Gram-positive model organism. Thus, this study provides a basis for further investigations on different pathogenic bacteria that could enable the use of HHP in the decontamination of bone grafts intended for transplantation.


Subject(s)
Decontamination , Escherichia coli , Animals , Cattle , Hydrostatic Pressure , Bone and Bones , Bacteria , Colony Count, Microbial
2.
Anal Bioanal Chem ; 414(2): 1015-1028, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34750644

ABSTRACT

The Vitamin D External Quality Assessment Scheme (DEQAS) distributes human serum samples four times per year to over 1000 participants worldwide for the determination of total serum 25-hydroxyvitamin D [25(OH)D)]. These samples are stored at -40 °C prior to distribution and the participants are instructed to store the samples frozen at -20 °C or lower after receipt; however, the samples are shipped to participants at ambient conditions (i.e., no temperature control). To address the question of whether shipment at ambient conditions is sufficient for reliable performance of various 25(OH)D assays, the equivalence of DEQAS human serum samples shipped under frozen and ambient conditions was assessed. As part of a Vitamin D Standardization Program (VDSP) commutability study, two sets of the same nine DEQAS samples were shipped to participants at ambient temperature and frozen on dry ice. Twenty-eight laboratories participated in this study and provided 34 sets of results for the measurement of 25(OH)D using 20 ligand binding assays and 14 liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Equivalence of the assay response for the frozen versus ambient DEQAS samples for each assay was evaluated using multi-level modeling, paired t-tests including a false discovery rate (FDR) approach, and ordinary least squares linear regression analysis of frozen versus ambient results. Using the paired t-test and confirmed by FDR testing, differences in the results for the ambient and frozen samples were found to be statistically significant at p < 0.05 for four assays (DiaSorin, DIAsource, Siemens, and SNIBE prototype). For all 14 LC-MS/MS assays, the differences in the results for the ambient- and frozen-shipped samples were not found to be significant at p < 0.05 indicating that these analytes were stable during shipment at ambient conditions. Even though assay results have been shown to vary considerably among different 25(OH)D assays in other studies, the results of this study also indicate that sample handling/transport conditions may influence 25(OH)D assay response for several assays.


Subject(s)
Freezing , Vitamin D/analogs & derivatives , Vitamin D/blood , Chromatography, Liquid/methods , Humans , Tandem Mass Spectrometry/methods
3.
Anal Bioanal Chem ; 414(1): 333-349, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34432104

ABSTRACT

An interlaboratory comparison study was conducted by the Vitamin D Standardization Program (VDSP) to assess the performance of liquid chromatography - tandem mass spectrometry (LC-MS/MS) assays used for the determination of serum total 25-hydroxyvitamin D (25(OH)D), which is the sum of 25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 (25(OH)D3). A set of 50 single-donor samples was assigned target values for concentrations of 25(OH)D2, 25(OH)D3, 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3), and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) using isotope dilution liquid chromatography - tandem mass spectrometry (ID LC-MS/MS). VDSP Intercomparison Study 2 Part 1 includes results from 14 laboratories using 14 custom LC-MS/MS assays. Assay performance was evaluated using mean % bias compared to the assigned target values and using linear regression analysis of the test assay mean results and the target values. Only 53% of the LC-MS/MS assays met the VDSP criterion of mean % bias ≤ |±5%|. For the LC-MS/MS assays not meeting the ≤ |±5%| criterion, four assays had mean % bias of between 12 and 21%. Based on multivariable regression analysis using the concentrations of the four individual vitamin D metabolites in the 50 single-donor samples, the performance of several LC-MS/MS assays was found to be influenced by the presence of 3-epi-25(OH)D3. The results of this interlaboratory study represent the most comprehensive comparison of LC-MS/MS assay performance for serum total 25(OH)D and document the significant impact of the lack of separation of 3-epi-25(OH)D3 and 25(OH)D3 on assay performance, particularly with regard to mean % bias.


Subject(s)
Tandem Mass Spectrometry , Vitamin D , 25-Hydroxyvitamin D 2 , Chromatography, Liquid/methods , Reference Standards , Tandem Mass Spectrometry/methods , Vitamin D/analogs & derivatives
4.
J Mech Behav Biomed Mater ; 124: 104867, 2021 12.
Article in English | MEDLINE | ID: mdl-34601432

ABSTRACT

This study introduces a novel technique to implement a locking hole system into AM patient-specific implants without the need of additional post-processing steps such as mechanical machining. This has the potential to decrease the time and cost of manufacturing these implants, providing surgeons with an additional option, that is better suited in cases where the underlying bone is already weakened or bone porosis is an inherent risk. A commercially available locking system was chosen and replicated using high-resolution X-ray CT. A biocompatible material, 316L stainless steel was used to print specimen on a L-PBF machine in different orientations. The specimen were heat treated to tune the mechanical properties to enable the locking system to work. The accuracy of the printed holes was confirmed using a nominal/actual comparison between the original and printed holes. The strength of the system was evaluated by measuring the force needed to push the screw out of the locking plate. The 316L stainless steel samples, when annealed to tailor hardness, performed similarly to the commercial system. This included different build orientations that suggest the locking system can be included in AM implants without the need for additional post-processing steps.


Subject(s)
Bone Plates , Bone Screws , Biomechanical Phenomena , Fracture Fixation, Internal , Humans , Materials Testing , Stainless Steel
5.
Anal Bioanal Chem ; 413(20): 5067-5084, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34184102

ABSTRACT

An interlaboratory study was conducted through the Vitamin D Standardization Program (VDSP) to assess commutability of Standard Reference Materials® (SRMs) and proficiency testing/external quality assessment (PT/EQA) samples for determination of serum total 25-hydroxyvitamin D [25(OH)D] using ligand binding assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A set of 50 single-donor serum samples were assigned target values for 25-hydroxyvitamin D2 [25(OH)D2] and 25-hydroxyvitamin D3 [25(OH)D3] using reference measurement procedures (RMPs). SRM and PT/EQA samples evaluated included SRM 972a (four levels), SRM 2973, six College of American Pathologists (CAP) Accuracy-Based Vitamin D (ABVD) samples, and nine Vitamin D External Quality Assessment Scheme (DEQAS) samples. Results were received from 28 different laboratories using 20 ligand binding assays and 14 LC-MS/MS methods. Using the test assay results for total serum 25(OH)D (i.e., the sum of 25(OH)D2 and 25(OH)D3) determined for the single-donor samples and the RMP target values, the linear regression and 95% prediction intervals (PIs) were calculated. Using a subset of 42 samples that had concentrations of 25(OH)D2 below 30 nmol/L, one or more of the SRM and PT/EQA samples with high concentrations of 25(OH)D2 were deemed non-commutable using 5 of 11 unique ligand binding assays. SRM 972a (level 4), which has high exogenous concentration of 3-epi-25(OH)D3, was deemed non-commutable for 50% of the LC-MS/MS assays.


Subject(s)
Societies, Medical/standards , Vitamin D/analogs & derivatives , Vitamin D/chemistry , Humans , Reference Standards , Specimen Handling , Vitamin D/blood
6.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Article in English | MEDLINE | ID: mdl-31111503

ABSTRACT

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Carbohydrate Metabolism, Inborn Errors/pathology , Catalytic Domain/genetics , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Animals , Behavior, Animal , Carbohydrate Metabolism, Inborn Errors/enzymology , Disease Models, Animal , Enzyme Stability , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Protein Multimerization
7.
Nat Commun ; 9(1): 584, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402972

ABSTRACT

In the original version of this Article, the second and third sentences of the first paragraph of the "Gate voltage and antidot period dependencies" section of the Results originally incorrectly read "The characteristic evolution of the sheet resistance ρ□=ρ□ (B=0) with Vg shown for three antidot samples and an unpatterned reference sample in Fig. 3a. The maxima of ρxx, located between Vg~0.5 and 1 V, reflect the charge neutrality point (CNP), corresponding to an EF position located slightly in the valence band (see band structure in Fig. 3b)." In the corrected version, "[Formula: see text]" is replaced by "[Formula: see text]", and "The maxima of [Formula: see text]" is replaced by "The maxima of [Formula: see text]".

8.
Nat Commun ; 8(1): 2023, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222407

ABSTRACT

Transport in topological matter has shown a variety of novel phenomena over the past decade. Although numerous transport studies have been conducted on three-dimensional topological insulators (TIs), study of ballistic motion and thus exploration of potential landscapes on a hundred nanometer scale is for the prevalent TI materials almost impossible due to their low carrier mobility. Therefore, it is unknown whether helical Dirac electrons in TIs, bound to interfaces between topologically distinct materials, can be manipulated on the nanometer scale by local gates or locally etched regions. Here we impose a submicron periodic potential onto a single surface of Dirac electrons in high-mobility strained mercury telluride (HgTe), which is a strong TI. Pronounced geometric resistance resonances constitute the clear-cut observation of a ballistic effect in three-dimensional TIs.

9.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284147

ABSTRACT

Here we report the draft genome sequence (6.6 Mbp) of the type strain Clostridium magnum, an acetogen with two operons coding for two separate Rnf complexes. C. magnum grows on a broad range of organic substrates and converts CO2 and H2 to acetate using the Wood-Ljungdahl pathway.

10.
Extremophiles ; 20(5): 653-61, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27338272

ABSTRACT

Moorella thermoacetica is one of the model acetogenic bacteria for the resolution of the Wood-Ljungdahl (acetyl-CoA) pathway in which CO2 is autotrophically assimilated yielding acetyl-CoA as central intermediate. Its further conversion into acetate relies on subsequent phosphotransacetylase (PTA) and acetate kinase reactions. However, the genome of M. thermoacetica contains no pta homologous gene. It has been speculated that the moth_0864 and moth_1181 gene products sharing similarities with an evolutionarily distinct phosphotransacylase involved in 1,2-propanediol utilization (PDUL) of Salmonella enterica act as PTAs in M. thermoacetica. Here, we demonstrate specific PTA activities with acetyl-CoA as substrate of 9.05 and 2.03 U/mg for the recombinant enzymes PDUL1 (Moth_1181) and PDUL2 (Moth_0864), respectively. Both showed maximal activity at 65 °C and pH 7.6. Native proteins (90 kDa) are homotetramers composed of four subunits with apparent molecular masses of about 23 kDa. Thus, one or both PDULs of M. thermoacetica might act as PTAs in vivo catalyzing the penultimate step of the Wood-Ljungdahl pathway toward the formation of acetate. In silico analysis underlined that up to now beside of M. thermoacetica, only Sporomusa ovata contains only PDUL like class(III)-PTAs but no other phosphotransacetylases or phosphotransbutyrylases (PTBs).


Subject(s)
Bacterial Proteins/metabolism , Genes, Bacterial , Moorella/enzymology , Phosphate Acetyltransferase/metabolism , Propylene Glycol/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Moorella/genetics , Phosphate Acetyltransferase/chemistry , Phosphate Acetyltransferase/genetics , Protein Multimerization
11.
Metab Eng ; 36: 37-47, 2016 07.
Article in English | MEDLINE | ID: mdl-26971669

ABSTRACT

Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.


Subject(s)
Acetates/metabolism , Acetobacterium/physiology , Acetone/metabolism , Biosynthetic Pathways/physiology , Carbon Dioxide/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/physiology , Acetone/isolation & purification , Genetic Enhancement/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Microbiology (Reading) ; 161(11): 2098-109, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26362088

ABSTRACT

Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe Clostridium acetobutylicum, five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The ssp genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σG or a σF consensus promoter upstream of each ssp gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA in vitro thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in Escherichia coli and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of C. acetobutylicum as members of α/ß-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of C. acetobutylicum, SspA was identified almost exclusively, indicating its dominant biological role as a major α/ß-type SASP in vivo.


Subject(s)
Bacterial Proteins/metabolism , Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Peptide Hydrolases/metabolism , Spores, Bacterial/enzymology , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Deoxyribonuclease I/metabolism , Escherichia coli/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Appl Microbiol Biotechnol ; 98(21): 9059-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25149445

ABSTRACT

The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.


Subject(s)
Butyrates/metabolism , Clostridium acetobutylicum/metabolism , Coenzyme A/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/metabolism , Gene Deletion , Hydrogen-Ion Concentration , Models, Theoretical , Mutagenesis, Insertional
14.
Appl Microbiol Biotechnol ; 98(16): 7161-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24841119

ABSTRACT

As a member of the saccharolytic clostridia, a variety of different carbohydrates like glucose, fructose, or mannose can be used as carbon and energy source by Clostridium acetobutylicum ATCC 824. Thirteen phosphoenolpyruvate-dependent phosphotransferase systems (PTS) have been identified in C. acetobutylicum, which are likely to be responsible for the uptake of hexoses, hexitols, or disaccharides. Here, we focus on three PTS which are expected to be involved in the uptake of fructose, PTS(Fru), PTS(ManI), and PTS(ManII). To analyze their individual functions, each PTS was inactivated via homologous recombination or insertional mutagenesis. Standardized comparative batch fermentations in a synthetic medium with glucose, fructose, or mannose as sole carbon source identified PTS(Fru) as primary uptake system for fructose, whereas growth with fructose was not impaired in PTS(ManI) and slightly altered in PTS(ManII)-deficient strains of C. acetobutylicum. The inactivation of PTS(ManI) resulted in slower growth on mannose whereas the loss of PTS(ManII) revealed no phenotype during growth on mannose. This is the first time that it has been shown that PTS(Fru) and PTS(ManI) of C. acetobutylicum are directly involved in fructose and mannose uptake, respectively. Moreover, comprehensive comparison of the fermentation products revealed that the loss of PTS(Fru) prevents the solvent shift as no butanol and only basic levels of acetone and ethanol could be determined.


Subject(s)
Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/metabolism , Fructose/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Carbon/metabolism , Clostridium acetobutylicum/genetics , Culture Media/chemistry , Fermentation , Gene Knockout Techniques , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics
15.
J Comp Physiol B ; 184(6): 763-75, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24788387

ABSTRACT

Mice with genetic alterations are used in heart research as model systems of human diseases. In the last decade there was a marked increase in the recognition of genetic diversity within inbred mouse strains. Increasing numbers of inbred mouse strains and substrains and analytical variation of cardiac phenotyping methods require reproducible, high-throughput methods to standardize murine cardiovascular physiology. We describe methods for non-invasive, reliable, easy and fast to perform echocardiography and electrocardiography on awake mice. This method can be used for primary screening of the murine cardiovascular system in large-scale analysis. We provide insights into the physiological divergence of C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mouse hearts and define the expected normal values. Our report highlights that compared to the other three strains tested C57BL/6N hearts reveal features of heart failure such as hypertrophy and reduced contractile function. We found several features of the mouse ECG to be under genetic control and obtained several strain-specific differences in cardiac structure and function.


Subject(s)
Echocardiography/methods , Electrocardiography/methods , Heart/physiology , High-Throughput Screening Assays/methods , Mice, Inbred Strains/physiology , Phenotype , Animals , Mice , Reference Values , Species Specificity , Statistics, Nonparametric
16.
Appl Microbiol Biotechnol ; 97(14): 6451-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23640360

ABSTRACT

In response to changing extracellular pH levels, phosphate-limited continuous cultures of Clostridium acetobutylicum reversibly switches its metabolism from the dominant formation of acids to the prevalent production of solvents. Previous experimental and theoretical studies have revealed that this pH-induced metabolic switch involves a rearrangement of the intracellular transcriptomic, proteomic and metabolomic composition of the clostridial cells. However, the influence of the population dynamics on the observations reported has so far been neglected. Here, we present a method for linking the pH shift, clostridial growth and the acetone-butanol-ethanol fermentation metabolic network systematically into a model which combines the dynamics of the external pH and optical density with a metabolic model. Furthermore, the recently found antagonistic expression pattern of the aldehyde/alcohol dehydrogenases AdhE1/2 and pH-dependent enzyme activities have been included into this combined model. Our model predictions reveal that the pH-induced metabolic shift under these experimental conditions is governed by a phenotypic switch of predominantly acidogenic subpopulation towards a predominantly solventogenic subpopulation. This model-driven explanation of the pH-induced shift from acidogenesis to solventogenesis by population dynamics casts an entirely new light on the clostridial response to changing pH levels. Moreover, the results presented here underline that pH-dependent growth and pH-dependent specific enzymatic activity play a crucial role in this adaptation. In particular, the behaviour of AdhE1 and AdhE2 seems to be the key factor for the product formation of the two phenotypes, their pH-dependent growth, and thus, the pH-induced metabolic switch in C. acetobutylicum.


Subject(s)
Clostridium acetobutylicum/metabolism , Culture Media/chemistry , Phosphates/metabolism , Acetone/metabolism , Acids/metabolism , Butanols/metabolism , Clostridium acetobutylicum/chemistry , Clostridium acetobutylicum/growth & development , Culture Media/metabolism , Ethanol/metabolism , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Phenotype
17.
Microb Biotechnol ; 6(5): 526-39, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23332010

ABSTRACT

In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone-butanol-ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.


Subject(s)
Acetone/metabolism , Butanols/metabolism , Clostridium acetobutylicum/drug effects , Clostridium acetobutylicum/metabolism , Ethanol/metabolism , Gene Expression Regulation, Bacterial/drug effects , Clostridium acetobutylicum/genetics , Fermentation , Gene Expression Profiling , Hydrogen-Ion Concentration , Metabolism/drug effects , Models, Theoretical
18.
Metab Eng ; 15: 218-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22906955

ABSTRACT

A modified synthetic acetone operon was constructed. It consists of two genes from Clostridium acetobutylicum (thlA coding for thiolase and adc coding for acetoacetate decarboxylase) and one from Bacillus subtilis or Haemophilus influenzae (teII(srf) or ybgC, respectively, for thioesterase). Expression of this operon in Escherichia coli resulted in the production of acetone starting from the common metabolite acetyl-CoA via acetoacetyl-CoA and acetoacetate. The thioesterases do not need a CoA acceptor for acetoacetyl-CoA hydrolysis. Thus, in contrast to the classic acetone pathway of Clostridium acetobutylicum and related microorganisms which employ a CoA transferase, the new pathway is acetate independent. The genetic background of the host strains was crucial. Only E. coli strains HB101 and WL3 were able to produce acetone via the modified plasmid based pathway, up to 64mM and 42mM in 5-ml cultures, respectively. Using glucose fed-batch cultures the concentration could be increased up to 122mM acetone with HB101 carrying the recombinant plasmid pUC19ayt (thioesterase from H. influenzae). The formation of acetone led to a decreased acetate production by E. coli.


Subject(s)
Acetone/metabolism , Acyltransferases/genetics , Carboxy-Lyases/genetics , Escherichia coli/physiology , Metabolic Engineering/methods , Signal Transduction/genetics , Thiolester Hydrolases/genetics , Acetone/isolation & purification
19.
J Biotechnol ; 161(3): 354-65, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-22537853

ABSTRACT

The main product of the anaerobic fermentative bacterium Clostridium acetobutylicum is n-butanol, an organic solvent with severe toxic effects on the cells. Therefore, the identification of the molecular factors related to n-butanol stress constitutes a major strategy for furthering the understanding of the biotechnological production of n-butanol, an important industrial biofuel. Previous reports concerning n-butanol stress in C. acetobutylicum dealt exclusively with batch cultures. In this study, for the first time a comprehensive transcriptional analysis of n-butanol-stressed C. acetobutylicum was conducted using stable steady state acidogenic chemostat cultures. A total of 358 differentially expressed genes were significantly affected by n-butanol stress. Similarities, such as the upregulation of general stress genes, and differences in gene expression were compared in detail with earlier DNA microarrays performed in batch cultivation experiments. The main result of this analysis was the observation that genes involved in amino acid and nucleotide biosynthesis, as well as genes for specific transport systems were upregulated by n-butanol. Our results exclude any transcriptional response triggered by exogenous pH changes or solventogenic n-butanol formation. Finally, our data suggest that metabolic flux through the glycerolipid biosynthetic pathway increases, confirming that C. acetobutylicum modifies the cytoplasmic membrane composition in response to n-butanol stress.


Subject(s)
1-Butanol/pharmacology , Acids/metabolism , Bioreactors/microbiology , Clostridium acetobutylicum/genetics , Solvents/pharmacology , Stress, Physiological/drug effects , Transcription, Genetic/drug effects , Batch Cell Culture Techniques , Clostridium acetobutylicum/cytology , Clostridium acetobutylicum/drug effects , Clostridium acetobutylicum/growth & development , Cluster Analysis , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/genetics , Glycolipids/metabolism , Hydrogen-Ion Concentration/drug effects , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
20.
BMC Syst Biol ; 5: 10, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21247470

ABSTRACT

BACKGROUND: Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. RESULTS: We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. CONCLUSIONS: Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.


Subject(s)
Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Gene Expression Regulation, Bacterial , Solvents/metabolism , Systems Biology/methods , Acetone/metabolism , Butanols/metabolism , Clostridium acetobutylicum/growth & development , Culture Techniques , Fermentation , Genetic Engineering , Hydrogen-Ion Concentration , Metabolic Networks and Pathways/genetics , Metabolomics , Models, Biological , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...