Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Magn Reson ; 15: 42, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23706156

ABSTRACT

BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.


Subject(s)
Carotid Artery Diseases/diagnosis , Magnetic Resonance Angiography/methods , Neovascularization, Pathologic/diagnosis , Carotid Artery Diseases/pathology , Contrast Media , Feasibility Studies , Gadolinium DTPA , Humans , Least-Squares Analysis , Neovascularization, Pathologic/pathology , Phantoms, Imaging , Time Factors
2.
Article in English | MEDLINE | ID: mdl-22254366

ABSTRACT

Tagged magnetic resonance imaging (MRI) has the ability to directly and non-invasively alter tissue magnetization and produce tags on the deforming tissue [1], [2]. Since its development, the Spatial Modulation of Magnetization (SPAMM) [2] tagging pulse sequence has been widely available and is the most commonly used technique for producing sinusoidal tag patterns. However, SPAMM suffers from tag fading which occurs in the later phases of the cardiac cycle. Complementary SPAMM (CSPAMM) was introduced to solve this problem by acquiring and subtracting two SPAMM images [3]. The drawback of CSPAMM is that it results in doubling of the acquisition time. In this paper, we propose a novel pulse sequence, termed Orthogonal CSPAMM (OCSAPMM), which results in the same acquisition time as SPAMM for 2D deformation estimation while keeping the advantages of CSPAMM. Different from CSPAMM, in OCSPAMM the second tagging pulse orientation is rotated 90 degrees relative to the first one so that motion information can be obtained simultaneously in two directions. A cardiac motion phantom, which independently models cardiac wall thickening and rotation in the human heart was used to show the effectiveness of the proposed pulse sequence.


Subject(s)
Heart Ventricles/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Movement/physiology , Myocardial Contraction/physiology , Ventricular Function, Left/physiology , Humans , Magnetic Resonance Imaging, Cine/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
3.
Magn Reson Med ; 51(4): 799-806, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15065254

ABSTRACT

Balanced steady-state free precession (SSFP) techniques provide excellent contrast between myocardium and blood at a high signal-to-noise ratio (SNR). Hence, SSFP imaging has become the method of choice for assessing cardiac function at 1.5T. The expected improvement in SNR at higher field strength prompted us to implement SSFP at 3.0T. In this work, an optimized sequence protocol for cardiac SSFP imaging at 3.0T is derived, taking into account several partly adverse effects at higher field, such as increased field inhomogeneities, longer T(1), and power deposition limitations. SSFP contrast is established by optimizing the maximum amplitude of the radiofrequency (RF) field strength for shortest TR, as well as by localized linear or second-order shimming and local optimization of the resonance frequency. Given the increased SNR, sensitivity encoding (SENSE) can be employed to shorten breath-hold times. Short-axis, long-axis, and four-chamber cine views obtained in healthy adult subjects are presented, and three different types of artifacts are discussed along with potential methods for reducing them.


Subject(s)
Heart/physiology , Image Enhancement/methods , Magnetic Resonance Imaging, Cine/methods , Adult , Algorithms , Artifacts , Blood , Humans , Image Processing, Computer-Assisted , Male , Models, Biological , Myocardial Contraction/physiology
4.
J Cardiovasc Magn Reson ; 5(4): 589-94, 2003.
Article in English | MEDLINE | ID: mdl-14664136

ABSTRACT

Due to their relatively small size and central location within the thorax, improvement in signal-to-noise (SNR) is of paramount importance for in vivo coronary vessel wall imaging. Thus, with higher field strengths, coronary vessel wall imaging is likely to benefit from the expected "near linear" proportional gain in SNR. In this study, we demonstrate the feasibility of in vivo human high field (3 T) coronary vessel wall imaging using a free-breathing black blood fast gradient echo technique with respiratory navigator gating and real-time motion correction. With the broader availability of more SNR efficient fast spin echo and spiral techniques, further improvements can be expected.


Subject(s)
Coronary Vessels/pathology , Magnetic Resonance Angiography/methods , Adult , Equipment Design , Feasibility Studies , Humans , Magnetic Resonance Angiography/instrumentation
5.
Magn Reson Med ; 48(3): 425-9, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12210906

ABSTRACT

Current limitations of coronary magnetic resonance angiography (MRA) include a suboptimal signal-to-noise ratio (SNR), which limits spatial resolution and the ability to visualize distal and branch vessel coronary segments. Improved SNR is expected at higher field strengths, which may provide improved spatial resolution. However, a number of potential adverse effects on image quality have been reported at higher field strengths. The limited availability of high-field systems equipped with cardiac-specific hardware and software has previously precluded successful in vivo human high-field coronary MRA data acquisition. In the present study we investigated the feasibility of human coronary MRA at 3.0 T in vivo. The first results obtained in nine healthy adult subjects are presented.


Subject(s)
Coronary Vessels/anatomy & histology , Magnetic Resonance Angiography/methods , Adult , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...