Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (162)2020 08 18.
Article in English | MEDLINE | ID: mdl-32894269

ABSTRACT

In vitro slice electrophysiology techniques measure single-cell activity with precise electrical and temporal resolution. Brain slices must be relatively thin to properly visualize and access neurons for patch-clamping or imaging, and in vitro examination of brain circuitry is limited to only what is physically present in the acute slice. To maintain the benefits of in vitro slice experimentation while preserving a larger portion of presynaptic nuclei, we developed a novel slice preparation. This "wedge slice" was designed for patch-clamp electrophysiology recordings to characterize the diverse monaural, sound-driven inputs to medial olivocochlear (MOC) neurons in the brainstem. These neurons receive their primary afferent excitatory and inhibitory inputs from neurons activated by stimuli in the contralateral ear and corresponding cochlear nucleus (CN). An asymmetrical brain slice was designed which is thickest in the rostro-caudal domain at the lateral edge of one hemisphere and then thins towards the lateral edge of the opposite hemisphere. This slice contains, on the thick side, the auditory nerve root conveying information about auditory stimuli to the brain, the intrinsic CN circuitry, and both the disynaptic excitatory and trisynaptic inhibitory afferent pathways that converge on contralateral MOC neurons. Recording is performed from MOC neurons on the thin side of the slice, where they are visualized using DIC optics for typical patch-clamp experiments. Direct stimulation of the auditory nerve is performed as it enters the auditory brainstem, allowing for intrinsic CN circuit activity and synaptic plasticity to occur at synapses upstream of MOC neurons. With this technique, one can mimic in vivo circuit activation as closely as possible within the slice. This wedge slice preparation is applicable to other brain circuits where circuit analyses would benefit from preservation of upstream connectivity and long-range inputs, in combination with the technical advantages of in vitro slice physiology.


Subject(s)
Brain Stem/cytology , Brain Stem/physiology , Connectome/methods , Neurons/physiology , Animals , Auditory Pathways/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Olivary Nucleus/cytology , Olivary Nucleus/physiology , Patch-Clamp Techniques , Synapses/physiology
2.
J Neurosci ; 40(3): 509-525, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31719165

ABSTRACT

Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.


Subject(s)
Cochlear Nucleus/physiology , Neurons, Efferent/physiology , Olivary Nucleus/physiology , Trapezoid Body/physiology , Acoustic Stimulation , Animals , Axons/physiology , Brain Stem/cytology , Brain Stem/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Electric Stimulation , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Female , Glutamates/physiology , Male , Mice , Mice, Inbred C57BL , Olivary Nucleus/cytology , Patch-Clamp Techniques , Synapses/physiology , Trapezoid Body/cytology
3.
J Physiol ; 597(16): 4341-4355, 2019 08.
Article in English | MEDLINE | ID: mdl-31270820

ABSTRACT

KEY POINTS: Ongoing, moderate noise exposure does not instantly damage the auditory system but may cause lasting deficits, such as elevated thresholds and accelerated ageing of the auditory system. The neuromodulatory peptide urocortin-3 (UCN3) is involved in the body's recovery from a stress response, and is also expressed in the cochlea and the auditory brainstem. Lack of UCN3 facilitates age-induced hearing loss and causes permanently elevated auditory thresholds following a single 2 h noise exposure at moderate intensities. Outer hair cell function in mice lacking UCN3 is unaffected, so that the observed auditory deficits are most likely due to inner hair cell function or central mechanisms. Highly specific, rather than ubiquitous, expression of UCN3 in the brain renders it a promising candidate for designing drugs to ameliorate stress-related auditory deficits, including recovery from acoustic trauma. ABSTRACT: Environmental acoustic noise is omnipresent in our modern society, with sound levels that are considered non-damaging still causing long-lasting or permanent changes in the auditory system. The small neuromodulatory peptide urocortin-3 (UCN3) is the endogenous ligand for corticotropin-releasing factor receptor type 2 and together they are known to play an important role in stress recovery. UCN3 expression has been observed in the auditory brainstem, but its role remains unclear. Here we describe the detailed distribution of UCN3 expression in the murine auditory brainstem and provide evidence that UCN3 is expressed in the synaptic region of inner hair cells in the cochlea. We also show that mice with deficient UCN3 signalling experience premature ageing of the auditory system starting at an age of 4.7 months with significantly elevated thresholds of auditory brainstem responses (ABRs) compared to age-matched wild-type mice. Following a single, 2 h exposure to moderate (84 or 94 dB SPL) noise, UCN3-deficient mice exhibited significantly larger shifts in ABR thresholds combined with maladaptive recovery. In wild-type mice, the same noise exposure did not cause lasting changes to auditory thresholds. The presence of UCN3-expressing neurons throughout the auditory brainstem and the predisposition to hearing loss caused by preventing its normal expression suggests UCN3 as an important neuromodulatory peptide in the auditory system's response to loud sounds.


Subject(s)
Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/physiopathology , Noise/adverse effects , Signal Transduction/physiology , Urocortins/metabolism , Aging , Animals , Female , Hair Cells, Auditory, Outer , Hearing Loss, Noise-Induced/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Urocortins/genetics
4.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31152098

ABSTRACT

In neural circuits, action potentials (spikes) are conventionally caused by excitatory inputs whereas inhibitory inputs reduce or modulate neuronal excitability. We previously showed that neurons in the superior paraolivary nucleus (SPN) require solely synaptic inhibition to generate their hallmark offset response, a burst of spikes at the end of a sound stimulus, via a post-inhibitory rebound mechanism. In addition SPN neurons receive excitatory inputs, but their functional significance is not yet known. Here we used mice of both sexes to demonstrate that in SPN neurons, the classical roles for excitation and inhibition are switched, with inhibitory inputs driving spike firing and excitatory inputs modulating this response. Hodgkin-Huxley modeling suggests that a slow, NMDA receptor (NMDAR)-mediated excitation would accelerate the offset response. We find corroborating evidence from in vitro and in vivo recordings that lack of excitation prolonged offset-response latencies and rendered them more variable to changing sound intensity levels. Our results reveal an unsuspected function for slow excitation in improving the timing of post-inhibitory rebound firing even when the firing itself does not depend on excitation. This shows the auditory system employs highly specialized mechanisms to encode timing-sensitive features of sound offsets which are crucial for sound-duration encoding and have profound biological importance for encoding the temporal structure of speech.


Subject(s)
Action Potentials/physiology , Auditory Perception/physiology , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Superior Olivary Complex/physiology , Acoustic Stimulation , Animals , Female , Male , Mice, Inbred C57BL
5.
J Neurosci ; 37(34): 8239-8255, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28760859

ABSTRACT

Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d of age. Earplugs were used to induce ∼50 dB elevation in auditory thresholds. If introduced at hearing onset, trapezoid body fibers developed thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment.SIGNIFICANCE STATEMENT The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiological limit of action potential generation, precision, and speed. In this study we demonstrate for the first time that changes in peripheral activity modifies the thickness of myelin in sensory neurons, not only in development but also in mature animals. The current study suggests that changes in CNS myelination occur as a downstream mechanism following peripheral deficit. Given the required submillisecond temporal precision for binaural auditory processing, reduced myelination might augment sensorineural hearing impairment.


Subject(s)
Acoustic Stimulation/methods , Auditory Pathways/physiology , Axons/physiology , Evoked Potentials, Auditory/physiology , Nerve Fibers, Myelinated/physiology , Trapezoid Body/physiology , Action Potentials/physiology , Animals , Auditory Pathways/cytology , Brain Stem/cytology , Brain Stem/physiology , Female , Male , Mice , Mice, Inbred CBA , Organ Culture Techniques , Sound , Trapezoid Body/cytology
6.
J Neurophysiol ; 116(6): 2676-2688, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27655966

ABSTRACT

In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Superior Olivary Complex/cytology , Superior Olivary Complex/metabolism , Acoustic Stimulation , Animals , Animals, Newborn , Auditory Pathways/physiology , Choline O-Acetyltransferase/metabolism , Electric Stimulation , Glycine Plasma Membrane Transport Proteins/metabolism , In Vitro Techniques , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Models, Neurological , Neurons/metabolism , Patch-Clamp Techniques , Phosphopyruvate Hydratase/metabolism , Psychoacoustics , Stilbamidines/pharmacokinetics , Vesicular Glutamate Transport Protein 1/metabolism
7.
Article in English | MEDLINE | ID: mdl-24672432

ABSTRACT

For all neurons, a proper balance of synaptic excitation and inhibition is crucial to effect computational precision. Achievement of this balance is remarkable when one considers factors that modulate synaptic strength operate on multiple overlapping time scales and affect both pre- and postsynaptic elements. Recent studies have shown that inhibitory transmitters, glycine and GABA, are co-released in auditory nuclei involved in the computation of interaural time disparities (ITDs), a cue used to process sound source location. The co-release expressed at these synapses is heavily activity dependent, and generally occurs when input rates are high. This circuitry, in both birds and mammals, relies on inhibitory input to maintain the temporal precision necessary for ITD encoding. Studies of co-release in other brain regions suggest that GABA and glycine receptors (GlyRs) interact via cross-suppressive modulation of receptor conductance. We performed in vitro whole-cell recordings in several nuclei of the chicken brainstem auditory circuit to assess whether this cross-suppressive phenomenon was evident in the avian brainstem. We evaluated the effect of pressure-puff applied glycine on synaptically evoked inhibitory currents in nucleus magnocellularis (NM) and the superior olivary nucleus (SON). Glycine pre-application reduced the amplitude of inhibitory postsynaptic currents (IPSCs) evoked during a 100 Hz train stimulus in both nuclei. This apparent glycinergic modulation was blocked in the presence of strychnine. Further experiments showed that this modulation did not depend on postsynaptic biochemical interactions such as phosphatase activity, or direct interactions between GABA and GlyR proteins. Rather, voltage clamp experiments in which we manipulated Cl(-) flux during agonist application suggest that activation of one receptor will modulate the conductance of the other via local changes in Cl(-) ion concentration within microdomains of the postsynaptic membrane.


Subject(s)
Auditory Pathways/drug effects , Glycine/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Neural Inhibition/drug effects , Neurons/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Chickens , Female , Male , Olivary Nucleus/drug effects , Patch-Clamp Techniques , Receptors, Glycine/metabolism , Synaptic Transmission/drug effects
8.
J Neurophysiol ; 111(3): 565-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24198323

ABSTRACT

Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405-2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625-9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons.


Subject(s)
Auditory Pathways/metabolism , Basal Nucleus of Meynert/metabolism , Glycine/metabolism , Inhibitory Postsynaptic Potentials , Receptors, Glycine/metabolism , Sound Localization , Animals , Auditory Pathways/physiology , Basal Nucleus of Meynert/physiology , Chickens , Evoked Potentials, Auditory , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Receptors, Glycine/genetics
9.
J Physiol ; 590(13): 3047-66, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22473782

ABSTRACT

Interaural time disparities (ITDs) are the primary cues for localisation of low-frequency sound stimuli. ITDs are computed by coincidence-detecting neurones in the medial superior olive (MSO) in mammals. Several previous studies suggest that control of synaptic gain is essential for maintaining ITD selectivity as stimulus intensity increases. Using acute brain slices from postnatal day 7 to 24 (P7­P24) Mongolian gerbils, we confirm that activation of GABAB receptors reduces the amplitude of excitatory and inhibitory synaptic currents to the MSO and, moreover, show that the decay kinetics of IPSCs are slowed in mature animals. During repetitive stimuli, activation of GABAB receptors reduced the amount of depression observed, while PSC suppression and the slowed kinetics were maintained. Additionally, we used physiological and modelling approaches to test the potential impact of GABAB activation on ITD encoding in MSO neurones. Current clamp recordings from MSO neurones were made while pharmacologically isolated excitatory inputs were bilaterally stimulated using pulse trains that simulate ITDs in vitro. MSO neurones showed strong selectivity for bilateral delays. Application of both GABAB agonists and antagonists demonstrate that GABAB modulation of synaptic input can sharpen ITD selectivity. We confirmed and extended these results in a computational model that allowed for independent manipulation of each GABAB-dependent effect. Modelling suggests that modulation of both amplitude and kinetics of synaptic inputs by GABAB receptors can improve precision of ITD computation. Our studies suggest that in vivo modulation of synaptic input by GABAB receptors may act to preserve ITD selectivity across various stimulus conditions.


Subject(s)
Olivary Nucleus/physiology , Receptors, GABA-B/physiology , Sound Localization/physiology , Acoustic Stimulation , Animals , Excitatory Postsynaptic Potentials , Gerbillinae , In Vitro Techniques , Inhibitory Postsynaptic Potentials , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...