Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675235

ABSTRACT

Microdroplet resonators provide an excellent tool for optical studies of water, but water microdroplets are difficult to maintain outside a carefully controlled environment. We present a method for maintaining a water microdroplet resonator on a 3D-printed hydrophobic surface in an ambient environment. The droplet is maintained through a passive microfluidic system that supplies water to the droplet through a vertical channel at a rate equivalent to its evaporation. In this manner, we are able to create and passively maintain water microdroplet resonators with quality factors as high as 3×108.

2.
Opt Express ; 30(2): 1599-1606, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209316

ABSTRACT

Liquid microdroplet resonators provide an excellent tool for optical studies due to their innate smoothness and high quality factors, but precise control over their geometries can be difficult. In contrast, three dimensional (3D) printed components are highly customizable but suffer from roughness and pixelation. We present 3D printed structures which leverage the versatility of 3D printing with the smoothness of microdroplets. Our devices enable the reliable creation of microdroplet resonators of varying shapes and sizes in an ambient environment, and our coupling scheme allows for high control over droplet position.

3.
Adv Mater Interfaces ; 7(9)2020 May 07.
Article in English | MEDLINE | ID: mdl-33072494

ABSTRACT

Thin liquid films (TLF) have fundamental and technological importance ranging from the thermodynamics of cell membranes to the safety of light-water cooled nuclear reactors. The creation of stable water TLFs, however, is very difficult. In this paper, the realization of thin liquid films of water with custom 3D geometries that persist indefinitely in ambient environments is reported. The wetting films are generated using microscale "mounts" fed by microfluidic channels with small feature sizes and large aspect ratios. These devices are fabricated with a custom 3D printer and resin, which were developed to print high resolution microfluidic geometries as detailed in Reference 26. By modifying the 3D-printed polymer to be hydrophilic and taking advantage of well-known wetting principles and capillary effects, self-sustaining microscale "water fountains" are constructed that continuously replenish water lost to evaporation while relying on surface tension to stabilize their shape. To the authors' knowledge, this is the first demonstration of stable sub-micron thin liquid films (TLFs) of pure water on curved 3D geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...