Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34440586

ABSTRACT

Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria within the inclusion influences individual bacterium. The life cycle of Chlamydia involves transitioning between the invasive elementary bodies (EBs) and replicative reticulate bodies (RBs). We have used cryo-soft X-ray tomography to observe individual inclusions, an approach that combines 40 nm spatial resolution and large volume imaging (up to 16 µm). Using semi-automated segmentation pipeline, we considered each inclusion as an individual bacterial niche. Within each inclusion, we identifyed and classified different forms of the bacteria and confirmed the recent finding that RBs have a variety of volumes (small, large and abnormal). We demonstrate that the proportions of these different RB forms depend on the bacterial concentration in the inclusion. We conclude that each inclusion operates as an autonomous community that influences the characteristics of individual bacteria within the inclusion.

2.
J Vis Exp ; (171)2021 05 28.
Article in English | MEDLINE | ID: mdl-34125093

ABSTRACT

Three-dimensional (3D) structured illumination microscopy (SIM) allows imaging of fluorescently labelled cellular structures at higher resolution than conventional fluorescence microscopy. This super-resolution (SR) technique enables visualization of molecular processes in whole cells and has the potential to be used in conjunction with electron microscopy and X-ray tomography to correlate structural and functional information. A SIM microscope for cryogenically preserved samples (cryoSIM) has recently been commissioned at the correlative cryo-imaging beamline B24 at the UK synchrotron. It was designed specifically for 3D imaging of biological samples at cryogenic temperatures in a manner compatible with subsequent imaging of the same samples by X-ray microscopy methods such as cryo-soft X-ray tomography. This video article provides detailed methods and protocols for successful imaging using the cryoSIM. In addition to instructions on the operation of the cryoSIM microscope, recommendations have been included regarding the choice of samples, fluorophores, and parameter settings. The protocol is demonstrated in U2OS cell samples whose mitochondria and tubulin have been fluorescently labelled.


Subject(s)
Cryopreservation , Cytological Techniques , Fluorescent Dyes , Cells/ultrastructure , Data Collection , Humans , Imaging, Three-Dimensional , Lighting , Microscopy, Fluorescence , Tubulin
3.
STAR Protoc ; 2(2): 100529, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34027487

ABSTRACT

Correlation of 3D images acquired on different microscopes can be a daunting prospect even for experienced users. This protocol describes steps for registration of images from soft X-ray absorption contrast imaging and super-resolution fluorescence imaging of hydrated biological materials at cryogenic temperatures. Although it is developed for data generated at synchrotron beamlines that offer the above combination of microscopies, it is applicable to all analogous imaging systems where the same area of a sample is examined using successive non-destructive imaging techniques. For complete details on the use and execution of this protocol, please refer to Kounatidis et al. (2020).


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy/methods , Tomography, X-Ray/methods , Cell Line, Tumor , Humans
4.
Nat Protoc ; 16(6): 2851-2885, 2021 06.
Article in English | MEDLINE | ID: mdl-33990802

ABSTRACT

3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).


Subject(s)
Cryopreservation/methods , Tomography, X-Ray , Animals , HeLa Cells , Humans , Imaging, Three-Dimensional , Mice , Microscopy/methods , NIH 3T3 Cells
5.
Cell ; 182(2): 515-530.e17, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32610083

ABSTRACT

Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.


Subject(s)
Cryoelectron Microscopy/methods , Reoviridae/physiology , Cell Line, Tumor , Cryoelectron Microscopy/instrumentation , Endosomes/metabolism , Endosomes/virology , Fluorescent Dyes/chemistry , Humans , Imaging, Three-Dimensional , Microscopy, Fluorescence , Reoviridae/chemistry , Virus Release/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...