Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 630, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720147

ABSTRACT

BACKGROUND: The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies. METHODS AND RESULTS: The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC-65.8%, CT-28.2%, and TT-6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045). CONCLUSION: Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.


Subject(s)
COVID-19 , Interleukin-1beta , SARS-CoV-2 , Humans , Interleukin-1beta/genetics , COVID-19/genetics , Male , Female , Middle Aged , Aged , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency/genetics , Alleles , Genotype , Adult , Genetic Predisposition to Disease
2.
J Mol Neurosci ; 74(1): 1, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180598

ABSTRACT

Autistic spectrum disorders (ASD) in children are becoming increasingly common, reaching epidemic proportions. Among the various causes contributing to the development of ASD, the leading place belongs to both chromosomal pathologies and genetic syndromes and their consequence - metabolic imbalance or severe metabolic disorders. Depending on the degree of metabolic pathway damage, certain phenotypes of ASD are formed. A deletion of ~3.1 Mb of chromosome 15q24 was detected in the examined 2-year-old boy with a "mild phenotype" of autism without an obvious delay in mental development. A wide range of additional studies included genetic testing of folate metabolism genes and analysis of metabolites of the methylation cycle and detection of antibodies to folic acid alpha receptors. A heterozygous variant of the MTHFR gene (rs1801133), moderate hyperhomocysteinemia, hypermethylation, and an increased titer of antibodies to alpha receptors of folic acid were revealed in the patient. This clinical case indicates the need for a multifaceted clinical and laboratory examination in children with ASD to identify the metabolic phenotype and prescribe personalized treatment. A personalized treatment strategy will improve the cognitive functions, psycho-emotional state, and social adaptation of individuals with ASD in the long term."


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child, Preschool , Humans , Male , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Cognition , Folic Acid
3.
J Cancer Res Clin Oncol ; 149(13): 11919-11927, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37420018

ABSTRACT

PURPOSE: The aim of this study was to assess the clinical significance of RUNX3 gene hypermethylation in the pathogenetic mechanisms of breast cancer in women, taking into account its cohypermethylation with the BRCA1 gene. METHODS: This study included 74 women with newly diagnosed breast cancer (samples from female primary breast carcinomas and paired peripheral blood samples) and 62 women without oncological pathology-control group (peripheral blood samples). Epigenetic testing for hypermethylation status studying was performed in all samples on freshly collected material with the addition of a preservative before the storage and DNA isolation. RESULTS: Hypermethylation of the RUNX3 gene promoter region was detected in 71.6% samples of breast cancer tissue and in 35.13% samples of blood. The RUNX3 gene promoter region hypermethylation was significantly higher among breast cancer patients compared to the control group. The frequency of cohypermethylation in RUNX3 and BRCA1 genes was significantly increased in breast cancer tissues compared to the blood of patients. CONCLUSION: A significantly increased frequency of the hypermethylation of the RUNX3 gene promoter region and its cohypermethylation with the BRCA1 gene promoter region was found in tumor tissue and blood samples from patients with breast cancer, in contrast to the control group. The identified differences indicate the importance of further investigations of suppressor genes cohypermethylation in patients with breast cancer. Further large-scale studies are needed to find out whether the detected hypermethylation and cohypermethylation of the RUNX3 gene promoter region will have an impact on the treatment strategy in patients.


Subject(s)
Breast Neoplasms , Carcinoma , Female , Humans , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma/genetics , Clinical Relevance , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , DNA Methylation , Genes, BRCA1 , Promoter Regions, Genetic
4.
Nitric Oxide ; 134-135: 44-48, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37037281

ABSTRACT

BACKGROUND: There is a hypothesis that a sufficient level of endothelial nitric oxide synthase is important for reliable protection against COVID-19. Theoretical ideas about the NOS3 gene demonstrated that it can have an effect on links of the complications pathogenesis in COVID-associated pneumonia. We determined the goal - to investigate the association of the NOS3 gene variants with the occurrence of the disease and its clinical course in patients of the intensive care unit. METHODS: The study group included 117 patients with a diagnosis of severe "viral COVID-19 pneumonia". Determination of NOS3 gene variants was performed using the PCR method. The probability of differences in the quantitative results were determined using ANOVA or Kruskal-Wallis test (depend of normality of studied parameters). RESULTS: Our results indicate that the presence of the NOS3 gene 4a allele increase the risk of complicated COVID-19-associated pneumonia (χ2 = 18.84, p = 0.00001, OR = 3.53 (1.95-6.39)). It was showed, that carriers of the 4aa genotype had a significantly higher ratio of SpO2/FiO2 on the first and second days after hospitalization (p = 0.017 and p = 0.03, respectively). Patients with the 4aa genotype also had the acid-base imbalances, as showed by indicators of base deficiency and standard bicarbonate, which were beyond the reference values. Potassium and sodium concentrations on the first and second day after hospitalization were also significantly lower in patients with 4aa genotype (p = 0.009 and p = 0.048, respectively), for whom, in the same time, the concentrations of C-reactive protein and total bilirubin were significantly higher (p = 0.002 and p = 0.033, respectively). CONCLUSIONS: Our results confirmed that the rs61722009 variant of the NOS3 gene is associated with an increased risk of severe СOVID-19-associated pneumonia and its adverse clinical course with potential progression of kidney and liver damage, and occurrence risk of systemic inflammatory response syndrome. These results require further research for the new metabolic strategy formation, in order to prevent the severe COVID-19 associated pneumonia and its complications.


Subject(s)
COVID-19 , Nitric Oxide Synthase Type III , Humans , Nitric Oxide Synthase Type III/genetics , COVID-19/genetics , Genotype , Alleles , Disease Progression
5.
Respir Investig ; 61(1): 103-109, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460583

ABSTRACT

BACKGROUND: Exploring the pathogenetic mechanisms behind severe lung damage in COVID-19 is crucial. In this study, we decided to focus on two molecular markers that affect surfactant metabolism and lung development: the surfactant protein B (SFTPB) and the glucocorticoid receptor (NR3C1) genes. The aim of our study was to determine the effect of SFTPB (rs11130866) and NR3C1 (rs41423247) gene variants on the course of the disease in patients with COVID-19, and the treatment measures they required. METHODS: The study group included 58 patients with a diagnosis of severe "viral COVID-19 pneumonia." Determination of SFTPB and NR3C1 gene variants was performed using the PCR-RFLP method. RESULTS: Our results indicate that the presence of the SFTPB gene CC genotype increases the risk of developing acute respiratory distress syndrome in patients with COVID-19 (χ2 = 4.03, p = 0.045, OR = 3.90 [1.19-12.78]). However, patients with the SFTPB gene TT genotype required respiratory support for a shorter period of time. Patients with the NR3C1 gene CC genotype underwent a longer glucocorticoid therapy. Moreover, for patients with the CC genotype, a longer stay in the intensive care unit was detected before lethal outcome. CONCLUSIONS: The obtained results confirm the influence of the SFTPB (rs11130866) and NR3C1 (rs41423247) gene variants on the therapy, course, and severity of the disease in patients with COVID-19. Of course, these results require further study, analysis, and larger, complex, systematic research.


Subject(s)
COVID-19 , Polymorphism, Single Nucleotide , Humans , Biomarkers , COVID-19/genetics , Precision Medicine , Receptors, Glucocorticoid/genetics , Surface-Active Agents
6.
Breast Cancer Res Treat ; 196(3): 505-515, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36284026

ABSTRACT

BACKGROUND: In this study, we compared the contribution of pathogenic variants of the BRCA1/2 genes (5382insC, 185delAG, 6174delT, 4153delA, T300G) and hypermethylation of the BRCA1 gene promoter region to the risk of breast cancer and clinical features in women. METHODS: This study enrolled 74 women (tumor tissue, blood) with newly diagnosed breast cancer and 62 women (blood) without oncological pathology (control group). Molecular genetic testing of samples and determination of hypermethylation status were performed on freshly collected material with the addition of a preservative before the procedure of DNA isolation. RESULTS: Hypermethylation of the BRCA1 gene promoter in women is a risk breast cancer factor (χ2 = 19.10, p = 0.001, OR = 16.25 (3.67-71.92)) and is more common than major pathogenic variants in the BRCA1/2 genes. The patients with the BRCA1 gene promoter hypermethylation were more likely to be diagnosed with late-stage metastatic cancer (χ2 = 4.31, p = 0.038, OR = 4.04 (1.19-13.65)). Hypermethylation of the BRCA1 gene promoter was predominant in tumor tissue among BC patients without family history compared to patients with cancer in relatives. CONCLUSION: We proved that hypermethylation of the BRCA1 gene promoter is a risk factor for breast cancer and possibly an early biological marker of clinical onset, as its presence contributed to rapid disease progression with metastasis. The high frequency of hypermethylation in the examined breast cancer patients may be a consequence of environmental factors pressure on the risk of the disease development. Further large-scale studies are needed for the clinical application of the results.


Subject(s)
Breast Neoplasms , Genes, BRCA1 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Promoter Regions, Genetic , DNA Methylation , Risk Factors , Biomarkers , BRCA1 Protein/genetics
7.
Breast Cancer Res Treat ; 195(3): 453-459, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35930098

ABSTRACT

PURPOSE: The gene BRCA1 plays a key role in DNA repair in breast and ovarian cell lines and this is considered one of target tumor suppressor genes in same line of cancers. The 5382insC mutation is among the most frequently detected in patients (Eastern Europe) with triple-negative breast cancer (TNBC). In Ukraine, there is not enough awareness of necessity to test patients with TNBC for BRCA1 mutations. That is why this group of patients is not well-studied, even through is known the mutation may affect the course of disease. METHODS: The biological samples of 408 female patients were analyzed of the 5382insC mutation in BRCA1. We compared the frequency of the 5382insC mutation in BRCA1 gene observed in Ukraine with known frequencies in other countries. RESULTS: For patients with TNBC, BRCA1 mutations frequency was 11.3%, while in patients with luminal types of breast cancers, the frequency was 2.8%. Prevalence of 5382insC among TNBC patients reported in this study was not different from those in Tunisia, Poland, Russia, and Bulgaria, but was higher than in Australia and Germany. CONCLUSION: The BRCA1 c.5382 mutation rate was recorded for the first time for TNBC patients in a Ukrainian population. The results presented in this study underscore the importance of this genetic testing of mutations in patients with TNBC. Our study supports BRCA1/2 genetic testing for all women diagnosed with TNBC, regardless of the age of onset or family history of cancer and not only for women diagnosed with TNBC at <60y.o., as guidelines recommend.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genes, BRCA1 , Genetic Predisposition to Disease , Genetic Testing , Humans , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ukraine/epidemiology
8.
Drug Metab Pers Ther ; 37(2): 133-139, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34860474

ABSTRACT

OBJECTIVES: COVID-19 continues to range around the world and set morbidity and mortality antirecords. Determining the role of genetic factors in the development of COVID-19 may contribute to the understanding of the pathogenetic mechanisms that lead to the development of complications and fatalities in this disease. The aim of our study was to analyze the effect of TNF-α (rs1800629), IL-6 (rs1800795) and VDR (rs731236 and rs1544410) genes variants on the development risk and the course of COVID-19 in intensive care patients. METHODS: The study group included 31 patients with diagnosis "viral COVID-19 pneumonia". All patients underwent standard daily repeated clinical, instrumental and laboratory examinations. Determination of IL-6, TNF-α, and VDR genes variants was performed using the PCR-RFLP method. RESULTS: It was found a significant increase in the rate of the CC genotype and C allele (38.7 vs. 12.0% and 0.6 vs. 0.4%, respectively) of the IL-6 gene in all patients of the study in comparison with population frequencies. There was a significantly higher rate of heterozygous genotypes TC and GA of the VDR gene in group of died patients. The rs1800629 variant of the TNF-α gene is associated with the need for respiratory support and its longer duration in patients with COVID-19. CONCLUSIONS: The obtained results support a hypothesis about the influence of variants of IL-6, TNF-α and VDR genes on severity of COVID-19. However, in order to draw definite conclusions, further multifaceted research in this area are need.


Subject(s)
COVID-19 , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/genetics , COVID-19/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Receptors, Calcitriol/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...