Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L786-L795, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38713613

ABSTRACT

Humans living at high-altitude (HA) have adapted to this environment by increasing pulmonary vascular and alveolar growth. RNA sequencing data from a novel murine model that mimics this phenotypical response to HA suggested estrogen signaling via estrogen receptor alpha (ERα) may be involved in this adaptation. We hypothesized ERα was a key mediator in the cardiopulmonary adaptation to chronic hypoxia and sought to delineate the mechanistic role ERα contributes to this process by exposing novel loss-of-function ERα mutant (ERαMut) rats to simulated HA. ERα mutant or wild-type (wt) rats were exposed to normoxia or hypoxia starting at conception and continued postnatally until 6 wk of age. Both wt and ERαMut animals born and raised in hypoxia exhibited lower body mass and higher hematocrits, total alveolar volumes (Va), diffusion capacities of carbon monoxide (DLCO), pulmonary arteriole (PA) wall thickness, and Fulton indices than normoxia animals. Right ventricle adaptation was maintained in the setting of hypoxia. Although no major physiologic differences were seen between wt and ERαMut animals at either exposure, ERαMut animals exhibited smaller mean linear intercepts (MLI) and increased PA total and lumen areas. Hypoxia exposure or ERα loss-of-function did not affect lung mRNA abundance of vascular endothelial growth factor, angiopoietin 2, or apelin. Sexual dimorphisms were noted in PA wall thickness and PA lumen area in ERαMut rats. In summary, in room air-exposed rats and rats with peri- and postnatal hypoxia exposure, ERα loss-of-function was associated with decreased alveolar size (primarily driven by hypoxic animals) and increased PA remodeling.NEW & NOTEWORTHY By exposing novel loss-of-function estrogen receptor alpha (Erα) mutant rats to a novel model of human high-altitude exposure, we demonstrate that ERα has subtle but inconsistent effects on endpoints relevant to cardiopulmonary adaptation to chronic hypoxia. Given that we observed some histologic, sex, and genotype differences, further research into cell-specific effects of ERα during hypoxia-induced cardiopulmonary adaptation is warranted.


Subject(s)
Adaptation, Physiological , Estrogen Receptor alpha , Hypoxia , Animals , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Hypoxia/metabolism , Hypoxia/physiopathology , Rats , Male , Lung/metabolism , Lung/pathology , Altitude , Disease Models, Animal , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
2.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R561-R570, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36036455

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.


Subject(s)
Hypertension, Pulmonary , Animals , Male , Rats , Disease Models, Animal , Hemodynamics , Hypertension, Pulmonary/chemically induced , Lactates , Monocrotaline/toxicity , Muscle, Skeletal , Pulmonary Artery , Rats, Sprague-Dawley
3.
Am J Respir Cell Mol Biol ; 67(4): 459-470, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35895592

ABSTRACT

CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6. Increased loss of extracellular cleaved DAF fragments was detected in normal human AECs exposed to complement 3a or 5a, and in lungs of IPF patients. C3a-induced ATF6 expression and DAF loss was inhibited using pertussis toxin (an enzymatic inactivator of G-protein coupled receptors), in murine AECs. Treatment with soluble DAF abrogated tunicamycin-induced C3a secretion and ER stress (ATF6 and BiP expression) and restored epithelial cadherin. Bleomycin-injured fibrotic mice subjected to lentiviral overexpression of DAF demonstrated diminished levels of local collagen deposition and complement activation. Further analyses showed diminished release of DAF fragments, as well as reduction in apoptosis (TUNEL and caspase 3/7 activity), and ER stress-related transcripts. Loss-of-function studies using Daf1 siRNA demonstrated worsened lung fibrosis detected by higher mRNA levels of Col1a1 and epithelial injury-related Muc1 and Snai1, with exacerbated local deposition of C5b-9. Our studies provide a rationale for rescuing fibrotic lungs via DAF induction that will restrain complement dysregulation and lung injury.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Animals , Bleomycin , CD55 Antigens/genetics , CD55 Antigens/metabolism , Cadherins , Caspase 3/metabolism , Complement C3a , Complement Membrane Attack Complex , Complement System Proteins , Fibrosis , Glycosylphosphatidylinositols , Heat-Shock Proteins , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung Injury/chemically induced , Mice , Pertussis Toxin , RNA, Messenger , RNA, Small Interfering , Tunicamycin
4.
Physiol Rep ; 10(1): e15156, 2022 01.
Article in English | MEDLINE | ID: mdl-35001565

ABSTRACT

Acute pulmonary embolism (PE) does not always resolve after treatment and can progress to chronic thromboembolic disease (CTED) or the more severe chronic thromboembolic pulmonary hypertension (CTEPH). The mechanisms surrounding the likelihood of PE resolution or progress to CTED/CTEPH remain largely unknown. We have developed a rat model of CTEPH that closely resembles the human disease in terms of hemodynamics and cardiac manifestations. Embolization of rats with polystyrene microspheres followed by suppression of angiogenesis with the inhibitor of vascular endothelial growth factor receptor 2 (VEGF-R2) SU5416 results in transient, acute pulmonary hypertension that progresses into chronic PE with PH with sustained right ventricular systolic pressures exceeding 70 mmHg (chronic pulmonary embolism [CPE] model). This model is similar to the widely utilized hypoxia/SU5416 model with the exception that the "first hit" is PE. Rats with CPE have impaired right heart function characterized by reduced VO2 Max, reduced cardiac output, and increased Fulton index. None of these metrics are adversely affected by PE alone. Contrast-mediated CT imaging of lungs from rats with PE minus SU5416 show large increases in pulmonary vascular volume, presumably due to an angiogenic response to acute PE/PH. Co-treatment with SU5416 suppresses angiogenesis and produces the CTEPH-like phenotype. We report here that treatment of CPE rats with agonists for soluble guanylate cyclase, a source of cGMP which is in turn a signal for angiogenesis, markedly increases angiogenesis in lungs, and ameliorates the cardiac deficiencies in the CPE model. These results have implications for future development of therapies for human CTEPH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Animals , Chronic Disease , Hemodynamics , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Pulmonary Embolism/complications , Rats , Soluble Guanylyl Cyclase , Vascular Endothelial Growth Factor A
5.
Transpl Immunol ; 56: 101224, 2019 10.
Article in English | MEDLINE | ID: mdl-31325493

ABSTRACT

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early mortality after lung transplantation. Anti-collagen type-V (col(V)) immunity has been observed in animal models of ischemia-reperfusion injury (IRI) and in PGD. We hypothesized that collagen type-V is an innate danger signal contributing to PGD pathogenesis. METHODS: Anti-col(V) antibody production was detected by flow cytometric assay following cultures of murine CD19+ splenic cells with col.(V). Responding murine B cells were phenotyped using surface markers. RNA-Seq analysis was performed on murine CD19+ cells. Levels of anti-col(V) antibodies were measured in 188 recipients from the Lung Transplant Outcomes Group (LTOG) after transplantation. RESULTS: Col(V) induced rapid production of anti-col(V) antibodies from murine CD19+ B cells. Subtype analysis demonstrated innate B-1 B cells bound col.(V). Col(V) induced a specific transcriptional signature in CD19+ B cells with similarities to, yet distinct from, B cell receptor (BCR) stimulation. Rapid de novo production of anti-col(V) Abs was associated with an increased incidence of clinical PGD after lung transplant. CONCLUSIONS: This study demonstrated that col.(V) is an rapidly recognized by B cells and has specific transcriptional signature. In lung transplants recipients the rapid seroconversion to anti-col(V) Ab is linked to increased risk of grade 3 PGD.


Subject(s)
B-Lymphocyte Subsets/physiology , Collagen Type V/immunology , Graft Rejection/immunology , Lung Transplantation , Adult , Aged , Animals , Antibody Formation , Antigens, CD19/metabolism , Cells, Cultured , Female , Flow Cytometry , Humans , Immunity, Innate , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Transcriptome
7.
Am J Respir Cell Mol Biol ; 58(3): 402-411, 2018 03.
Article in English | MEDLINE | ID: mdl-29111769

ABSTRACT

Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.


Subject(s)
DNA Damage/genetics , DNA Repair/genetics , Pulmonary Emphysema/genetics , Smoke/adverse effects , Smoking/adverse effects , Xeroderma Pigmentosum/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Transformed , Female , Genetic Predisposition to Disease/genetics , Humans , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Parenchymal Tissue/pathology , Pulmonary Emphysema/pathology
8.
FASEB J ; 31(12): 5543-5556, 2017 12.
Article in English | MEDLINE | ID: mdl-28821630

ABSTRACT

Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury via TGF-ß in murine bronchiolitis obliterans; that TGF-ß and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL-17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C' components (C' factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, -6, and -1B), and cytokine ligands (CXCL1, -2, -3, -5, -6, and -16). IL-17A induces protein and mRNA regulation of C' components and the synthesis of active C' 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild-type mice subjected to IL-17A neutralization and IL-17A knockout (il17a-/- ) mice were protected against bleomycin (BLEO)-induced fibrosis and collagen deposition. Further, BLEO-injured il17a-/- mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase-3/7, and local endoplasmic reticular stress-related genes. BLEO-induced local C' activation [C3a, C5a, and terminal C' complex (C5b-9)] was attenuated in il17a-/- mice, and IL-17A neutralization prevented the loss of epithelial C' inhibitors (C' receptor-1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi-mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase-3/7) and lung deposition of collagen and C' (C5b-9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL-17A is a potential mechanism in ameliorating lung fibrosis.-Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.


Subject(s)
Bleomycin/pharmacology , Complement Activation/drug effects , Fibrosis/metabolism , Interleukin-17/deficiency , Interleukin-17/metabolism , Lung Diseases/metabolism , Aged , Animals , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Fibrosis/genetics , Fluorescent Antibody Technique , Hemolysis/genetics , Hemolysis/physiology , Humans , Interleukin-17/genetics , Lung Diseases/genetics , Male , Mice , Middle Aged , Real-Time Polymerase Chain Reaction
9.
Article in English | MEDLINE | ID: mdl-29377033

ABSTRACT

While our previous studies suggest that limiting bleomycin-induced complement activation suppresses TGF-ß signaling, the specific hierarchical interactions between TGF-ß and complement in lung fibrosis are unclear. Herein, we investigated the mechanisms underlying TGF-ß-induced complement activation in the pathogenesis of lung fibrosis. C57-BL6 mice were given intratracheal instillations of adenoviral vectors overexpressing TGF-ß (Ad-TGFß) or the firefly gene-luciferase (Ad-Luc; control). Two weeks later, mice with fibrotic lungs were instilled RNAi specific to receptors for C3a or C5a-C3ar or C5ar, and sacrificed at day 28. Histopathological analyses revealed that genetic silencing of C3ar or C5ar arrested the progression of TGF-ß-induced lung fibrosis, collagen deposition and content (hydroxyproline, col1a1/2); and significantly suppressed local complement activation. With genetic silencing of either C3ar or C5ar, in Ad-TGFß-injured lungs: we detected the recovery of Smad7 (TGF-ß inhibitor) and diminished local release of DAF (membrane-bound complement inhibitor); in vitro: TGF-ß-mediated loss of DAF was prevented. Conversely, blockade of the TGF-ß receptor prevented C3a-mediated loss of DAF in both normal primary human alveolar and small airway epithelial cells. Of the 52 miRNAs analyzed as part of the Affymetrix array, normal primary human SAECs exposed to C3a, C5a or TGF-ß caused discrete and overlapping miRNA regulation related to epithelial proliferation or apoptosis (miR-891A, miR-4442, miR-548, miR-4633), cellular contractility (miR-1197) and lung fibrosis (miR-21, miR-200C, miR-31HG, miR-503). Our studies present potential mechanisms by which TGF-ß activates complement and promotes lung fibrosis.

10.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R197-R210, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27784688

ABSTRACT

Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.


Subject(s)
High-Intensity Interval Training/methods , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/therapy , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/therapy , Ventricular Dysfunction, Right/therapy , Animals , Hypertension, Pulmonary/complications , Hypertrophy, Right Ventricular/etiology , Male , Physical Conditioning, Animal/methods , Physical Endurance/physiology , Rats , Rats, Sprague-Dawley , Treatment Outcome , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathology
11.
Am J Respir Cell Mol Biol ; 55(6): 889-898, 2016 12.
Article in English | MEDLINE | ID: mdl-27494303

ABSTRACT

Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium.


Subject(s)
CD55 Antigens/metabolism , Epithelium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/metabolism , Amino Acids, Dicarboxylic/pharmacology , Animals , Cell Hypoxia/drug effects , Complement Activation/drug effects , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Gene Silencing/drug effects , Male , Mice, Inbred C57BL
12.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L375-88, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27288487

ABSTRACT

17ß-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 µg·kg(-1)·day(-1)) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies.


Subject(s)
Estradiol/physiology , Hypertension, Pulmonary/physiopathology , Adaptation, Physiological , Animals , Arterial Pressure , Autophagy , Estradiol/pharmacology , Female , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/physiopathology , Male , Nitric Oxide Synthase Type III/metabolism , Oxygen Consumption , Physical Exertion , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats, Sprague-Dawley , Sex Characteristics , Stroke Volume , Vascular Remodeling , Ventricular Dysfunction, Right , Ventricular Function, Right , Ventricular Pressure
13.
FASEB J ; 30(6): 2336-50, 2016 06.
Article in English | MEDLINE | ID: mdl-26956419

ABSTRACT

Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-ß and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-ß1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-ß/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.


Subject(s)
Fibroblasts/metabolism , Pulmonary Fibrosis/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/metabolism , Aged , Aged, 80 and over , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Cell Line , Collagen Type I, alpha 1 Chain , Complement Membrane Attack Complex/genetics , Complement Membrane Attack Complex/metabolism , Down-Regulation , Gene Expression Regulation/physiology , Humans , Lung Injury/chemically induced , Mice , Mice, Inbred C57BL , Middle Aged , Pulmonary Fibrosis/chemically induced , RNA Interference , Receptor, Anaphylatoxin C5a/genetics , Receptors, Complement/genetics , Signal Transduction/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Up-Regulation
14.
Exp Physiol ; 100(6): 742-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25867528

ABSTRACT

NEW FINDINGS: What is the central question of this study? The acute effect of exercise at moderately high intensity on already-elevated pulmonary arterial pressures and right ventricular wall stress in a rat model of pulmonary arterial hypertension (PAH) is unknown. What is the main finding and its importance? We show, for the first time, that in a rat model of PAH, exercise induces an acute reduction in pulmonary artery pressure associated with lung endothelial nitric oxide synthase activation, without evidence of acute right ventricular inflammation or myocyte apoptosis. Haemodynamic measures obtained with traditional invasive methodology as well as novel implantable telemetry reveal an exercise-induced 'window' of pulmonary hypertension alleviation, supporting future investigations of individualized exercise as therapy in PAH. Exercise improves outcomes of multiple chronic conditions, but controversial results, including increased pulmonary artery (PA) pressure, have prevented its routine implementation in pulmonary arterial hypertension (PAH), an incurable disease that drastically reduces exercise tolerance. Individualized, optimized exercise prescription for PAH requires a better understanding of disease-specific exercise responses. We investigated the acute impact of exercise on already-elevated PA pressure and right ventricular (RV) wall stress and inflammation in a rat model of PAH (PAH group, n = 12) induced once by monocrotaline (50 mg kg(-1) , i.p.; 2 weeks), compared with healthy control animals (n = 8). Single bouts of exercise consisted of a 45 min treadmill run at 75% of individually determined aerobic capacity (V̇O2max). Immediately after exercise, measurements of RV systolic pressure and systemic pressure were made via jugular and carotid cannulation, and were followed by tissue collection. Monocrotaline induced moderate PAH, evidenced by RV hypertrophy, decreased V̇O2max, PA muscularization, and RV and skeletal muscle cytoplasmic glycolysis detected by increased expression of glucose transporter-1. Acute exercise normalized the monocrotaline-induced elevation in RV systolic pressure and augmented pulmonary endothelial nitric oxide synthase activation, without evidence of increased RV inflammation or apoptosis. Real-time recordings of pulmonary and systemic pressures during and after single bouts of exercise made using novel implantable telemetry in the same animal for up to 11 weeks after monocrotaline (40 mg kg(-1) ) corroborated the finding of acute PA pressure decreases with exercise in PAH. The PA pressure-lowering effects of individualized exercise associated with RV-neutral effects and increases in vasorelaxor signalling encourage further development of optimized exercise regimens as adjunctive PAH therapy.


Subject(s)
Blood Pressure Monitoring, Ambulatory/methods , Exercise Therapy , Hemodynamics , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Pulmonary Artery/physiopathology , Telemetry/methods , Animals , Arterial Pressure , Disease Models, Animal , Enzyme Activation , Glycolysis , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/physiopathology , Kinetics , Male , Monocrotaline , Muscle, Skeletal/metabolism , Myocardium/metabolism , Myocardium/pathology , Nitric Oxide Synthase Type III/metabolism , Predictive Value of Tests , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Ventricular Function, Right , Ventricular Pressure
15.
Am J Physiol Lung Cell Mol Physiol ; 308(8): L797-806, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25659904

ABSTRACT

The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults.


Subject(s)
Hyperoxia/physiopathology , Lung Injury/physiopathology , Animals , Animals, Newborn , Cell Hypoxia , Female , Hyperoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Lung Injury/etiology , Male , Rats, Sprague-Dawley , Ventricular Remodeling
16.
Sci Transl Med ; 6(252): 252ra124, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25186179

ABSTRACT

Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation.


Subject(s)
Brain Injuries/metabolism , Brain Injuries/physiopathology , HMGB1 Protein/metabolism , Lung Transplantation , Lung/physiopathology , Receptors, Immunologic/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/physiopathology , Adult , Animals , Antibodies, Neutralizing/pharmacology , Brain Injuries/complications , Cardiac Output/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Interleukin-10/metabolism , Lung/drug effects , Lung/pathology , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Peptides/metabolism , Receptor for Advanced Glycation End Products , Receptors, Immunologic/deficiency , Tissue Donors , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/metabolism
17.
Pulm Circ ; 4(2): 300-10, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25006449

ABSTRACT

Endothelin-1 is a potent mediator of sepsis-induced pulmonary hypertension (PH). The pulmonary vascular effects of selective blockade of endothelin receptor subtype A (ETAR) during endotoxemia remain unknown. We hypothesized that selective ETAR antagonism attenuates endotoxin-induced PH and improves pulmonary artery (PA) vasoreactivity. Adult male Sprague-Dawley rats (250-450 g) received lipopolysaccharide (LPS; Salmonella typhimurium; 20 mg/kg intraperitoneally) or vehicle 6 hours before hemodynamic assessment and tissue harvest. The selective ETAR antagonist sitaxsentan (10 or 20 mg/kg) or vehicle was injected intravenously 3 hours after receipt of LPS. Right ventricular systolic pressure, mean arterial pressure (MAP), cardiac output (CO), oxygenation (P/F ratio), and serum bicarbonate were measured. Bronchoalveolar lavage (BAL) cell differential and lung wet-to-dry ratios were obtained. Endothelium-dependent and endothelium-independent vasorelaxations were determined in isolated PA rings. PA interleukin (IL)-1ß, IL-6, tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) were measured. LPS caused PH, decreased MAP, CO, and serum bicarbonate, and increased PA IL-1ß, IL-6, TNF-α, and iNOS mRNA. Sitaxsentan attenuated sepsis-induced PH and increased MAP. The P/F ratio, CO, serum bicarbonate, and BAL neutrophilia were not affected by sitaxsentan. In isolated PA rings, while not affecting phenylephrine-induced vasocontraction or endothelium-dependent relaxation, sitaxsentan dose-dependently attenuated LPS-induced alterations in endothelium-independent relaxation. PA cytokine mRNA levels were not significantly attenuated by ETAR blockade. We conclude that ETAR blockade attenuates endotoxin-induced alterations in systemic and PA pressures without negatively affecting oxygenation. This protective effect appears to be mediated not by attenuation of sepsis-induced cardiac dysfunction, acidosis, or alveolar inflammation but rather by improved endothelium-independent vasorelaxation.

18.
PLoS One ; 8(10): e76451, 2013.
Article in English | MEDLINE | ID: mdl-24204629

ABSTRACT

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scarring and matrix deposition. Recent reports highlight an autoimmune component in IPF pathogenesis. We have reported anti-col(V) immunity in IPF patients. The objective of our study was to determine the specificity of col(V) expression profile and anti-col(V) immunity relative to col(I) in clinical IPF and the efficacy of nebulized col(V) in pre-clinical IPF models. METHODS: Col(V) and col(I) expression profile was analyzed in normal human and IPF tissues. C57-BL6 mice were intratracheally instilled with bleomycin (0.025 U) followed by col(V) nebulization at pre-/post-fibrotic stage and analyzed for systemic and local responses. RESULTS: Compared to normal lungs, IPF lungs had higher protein and transcript expression of the alpha 1 chain of col(V) and col(I). Systemic anti-col(V) antibody concentrations, but not of anti-col(I), were higher in IPF patients. Nebulized col(V), but not col(I), prevented bleomycin-induced fibrosis, collagen deposition, and myofibroblast differentiation. Col(V) treatment suppressed systemic levels of anti-col(V) antibodies, IL-6 and TNF-α; and local Il-17a transcripts. Compared to controls, nebulized col(V)-induced tolerance abrogated antigen-specific proliferation in mediastinal lymphocytes and production of IL-17A, IL-6, TNF-α and IFN-γ. In a clinically relevant established fibrosis model, nebulized col(V) decreased collagen deposition. mRNA array revealed downregulation of genes specific to fibrosis (Tgf-ß, Il-1ß, Pdgfb), matrix (Acta2, Col1a2, Col3a1, Lox, Itgb1/6, Itga2/3) and members of the TGF-ß superfamily (Tgfbr1/2, Smad2/3, Ltbp1, Serpine1, Nfkb/Sp1/Cebpb). CONCLUSIONS: Anti-col(V) immunity is pathogenic in IPF, and col(V)-induced tolerance abrogates bleomycin-induced fibrogenesis and down regulates TGF- ß-related signaling pathways.


Subject(s)
Collagen Type V/immunology , Immune Tolerance , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/immunology , Transcription, Genetic , Transforming Growth Factor beta/genetics , Animals , Autoantibodies/blood , Autoantibodies/immunology , Bleomycin/adverse effects , Collagen Type I/immunology , Collagen Type V/administration & dosage , Collagen Type V/genetics , Collagen Type V/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation/drug effects , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Mice , Nebulizers and Vaporizers , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcription, Genetic/drug effects , Transforming Growth Factor beta/biosynthesis
19.
PLoS One ; 8(4): e62222, 2013.
Article in English | MEDLINE | ID: mdl-23620814

ABSTRACT

Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8(+) T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8(+) T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4(+) T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism.


Subject(s)
B-Lymphocytes/immunology , Hypersensitivity/immunology , Respiratory Tract Infections/immunology , T-Lymphocytes/immunology , Vaccinia virus/physiology , Vaccinia/immunology , Vaccinia/virology , Acute Disease , Animals , Bronchi/pathology , Bronchi/virology , CD8-Positive T-Lymphocytes/immunology , Chemokines/metabolism , Epithelium/pathology , Epithelium/virology , Giant Cells/pathology , Hyperplasia , Hypersensitivity/complications , Hypersensitivity/virology , Immunoglobulin G/blood , Inflammation/complications , Inflammation/pathology , Inflammation/virology , Interferon-gamma/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Lymphoid Tissue/virology , Mice , Mice, Inbred BALB C , Pneumonia/complications , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/virology , Species Specificity , Vaccinia/complications , Vaccinia/pathology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...