Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38430907

ABSTRACT

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Mice , Swine , Viral Proteins/genetics , Neuraminidase , Influenza A Virus, H3N2 Subtype , Antibodies, Monoclonal , Antibodies, Viral
2.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38214525

ABSTRACT

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Subject(s)
Hendra Virus , Henipavirus Infections , Henipavirus , Nipah Virus , Viral Proteins , Humans , Glycoproteins/metabolism , Hendra Virus/physiology , Henipavirus/physiology , Nipah Virus/genetics , Nipah Virus/metabolism , Peptides/metabolism , Viral Fusion Proteins , Viral Proteins/metabolism
3.
Sci Adv ; 9(20): eadg6076, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37196074

ABSTRACT

Enterovirus D68 (EV-D68) causes severe respiratory illness in children and can result in a debilitating paralytic disease known as acute flaccid myelitis. No treatment or vaccine for EV-D68 infection is available. Here, we demonstrate that virus-like particle (VLP) vaccines elicit a protective neutralizing antibody against homologous and heterologous EV-D68 subclades. VLP based on a B1 subclade 2014 outbreak strain elicited comparable B1 EV-D68 neutralizing activity as an inactivated viral particle vaccine in mice. Both immunogens elicited weaker cross-neutralization against heterologous viruses. A B3 VLP vaccine elicited more robust neutralization of B3 subclade viruses with improved cross-neutralization. A balanced CD4+ T helper response was achieved using a carbomer-based adjuvant, Adjuplex. Nonhuman primates immunized with this B3 VLP Adjuplex formulation generated robust neutralizing antibodies against homologous and heterologous subclade viruses. Our results suggest that both vaccine strain and adjuvant selection are critical elements for improving the breadth of protective immunity against EV-D68.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Vaccines, Virus-Like Particle , Animals , Mice , Broadly Neutralizing Antibodies , Antibodies, Neutralizing
4.
NPJ Vaccines ; 8(1): 58, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37080988

ABSTRACT

Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.

5.
Nat Commun ; 14(1): 1494, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932063

ABSTRACT

Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.


Subject(s)
Henipavirus Infections , Nipah Virus , Humans , Animals , Mice , Nipah Virus/metabolism , Epitopes , Cryoelectron Microscopy , Viral Envelope Proteins , Antibodies, Neutralizing/metabolism , Antibodies, Monoclonal
6.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36356572

ABSTRACT

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Hemagglutinins , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Ferrets , Antibodies, Neutralizing , Immunization
7.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36306784

ABSTRACT

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Cricetinae , Mice , Animals , Humans , Viral Envelope Proteins , Cricetulus , Membrane Glycoproteins , CHO Cells
8.
Nat Commun ; 12(1): 1722, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741916

ABSTRACT

Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/immunology , Influenza, Human/virology , Antigens, Viral/immunology , Gene Expression Profiling , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins , Humans , Immunity , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A virus/genetics , Influenza Vaccines/immunology , Orthomyxoviridae Infections/virology , Phylogeny
9.
Sci Transl Med ; 12(547)2020 06 10.
Article in English | MEDLINE | ID: mdl-32522807

ABSTRACT

The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.


Subject(s)
Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Mice , Zika Virus Infection/prevention & control
10.
Nat Commun ; 11(1): 791, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034141

ABSTRACT

The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38HA1 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38HA1 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Nanoparticles/chemistry , Polysaccharides/chemistry , Animals , Antibodies, Viral/immunology , Antibody Specificity , Asparagine/chemistry , Asparagine/metabolism , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Epitopes/immunology , Female , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Immunoglobulins/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control
12.
Nat Immunol ; 20(3): 362-372, 2019 03.
Article in English | MEDLINE | ID: mdl-30742080

ABSTRACT

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Nanoparticles/chemistry , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cross Reactions/drug effects , Cross Reactions/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunization , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
13.
Mol Cell ; 67(6): 1013-1025.e9, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28867293

ABSTRACT

In response to stresses, cells often halt normal cellular processes, yet stress-specific pathways must bypass such inhibition to generate effective responses. We investigated how cells redistribute global transcriptional activity in response to DNA damage. We show that an oscillatory increase of p53 levels in response to double-strand breaks drives a counter-oscillatory decrease of MYC levels. Using RNA sequencing (RNA-seq) of newly synthesized transcripts, we found that p53-mediated reduction of MYC suppressed general transcription, with the most highly expressed transcripts reduced to a greater extent. In contrast, upregulation of p53 targets was relatively unaffected by MYC suppression. Reducing MYC during the DNA damage response was important for cell-fate regulation, as counteracting MYC repression reduced cell-cycle arrest and elevated apoptosis. Our study shows that global inhibition with specific activation of transcriptional pathways is important for the proper response to DNA damage; this mechanism may be a general principle used in many stress responses.


Subject(s)
Breast Neoplasms/genetics , DNA Breaks, Double-Stranded , Proto-Oncogene Proteins c-myc/genetics , Transcription, Genetic , Transcriptome , Tumor Suppressor Protein p53/genetics , Apoptosis , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Cycle Checkpoints , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MCF-7 Cells , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Signal Transduction , Time Factors , Transfection , Tumor Suppressor Protein p53/metabolism
14.
Cell Syst ; 2(4): 272-82, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27135539

ABSTRACT

The transcription factor p53 responds to DNA double-strand breaks by increasing in concentration in a series of pulses of fixed amplitude, duration, and period. How p53 pulses influence the dynamics of p53 target gene expression is not understood. Here, we show that, in bulk cell populations, patterns of p53 target gene expression cluster into groups with stereotyped temporal behaviors, including pulsing and rising dynamics. These behaviors correlate statistically with the mRNA decay rates of target genes: short mRNA half-lives produce pulses of gene expression. This relationship can be recapitulated by mathematical models of p53-dependent gene expression in single cells and cell populations. Single-cell transcriptional profiling demonstrates that expression of a subset of p53 target genes is coordinated across time within single cells; p53 pulsing attenuates this coordination. These results help delineate how p53 orchestrates the complex DNA damage response and give insight into the function of pulsatile signaling pathways.


Subject(s)
Gene Expression Regulation , RNA, Messenger/genetics , DNA Breaks, Double-Stranded , Half-Life , Signal Transduction , Tumor Suppressor Protein p53
15.
Hepatology ; 55(6): 1684-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22234804

ABSTRACT

UNLABELLED: The aim of this study is to determine whether early viral dynamics and evolution predict outcome of primary acute hepatitis C virus (HCV) infection. HCV- and human immunodeficiency virus-negative injection drug users were enrolled prospectively and followed monthly to identify acute HCV infection using RNA detection. Subjects with more than 1 month between HCV-RNA-negative and -positive visits were excluded to ensure stringent acute infection. Differences in medians of log-transformed viral RNA levels and evolutionary rates in each gene of a 5'-hemigenomic amplicon were assessed using Mann-Whitney's rank-sum test. Correlation coefficient was calculated using Spearman's rank order. Initial viremia level was 50-fold higher in subjects with spontaneous clearance (compared with persistence) of primary acute HCV infection (median, 7.1 versus 5.4 log(10) IU/mL; P = 0.002). Initial viremia level in subjects with interleukin (IL)28B-C allele at rs12979860 and clearance was higher than that in subjects with IL28B-T allele and persistence (P = 0.001). Evolutionary rates in the hypervariable region 1 (HVR1) region of the E2 gene were significantly higher in self-resolvers than those in persistence subjects during early infection, whereas other genes or regions had comparable rates. All major substitutions in HVR1 in persistence subjects were convergent changes, whereas over the same time interval clearance subjects displayed divergent evolution, indicating different immune responses between the two groups. CONCLUSION: Spontaneous clearance of acute HCV infection is predicted by high initial viremia as well as favorable IL28B genotype and is associated with rapid envelope-sequence evolution. This linkage of host genetics, viral dynamics, and evolution provides new directions for mechanistic studies. (HEPATOLOGY 2012;55:1684-1691).


Subject(s)
Evolution, Molecular , Hepatitis C/virology , RNA, Viral/blood , Viral Proteins/genetics , Acute Disease , Adult , Female , Genotype , Hepatitis C/blood , Humans , Interferons , Interleukins/genetics , Male , Prospective Studies
16.
J Virol ; 84(10): 5067-77, 2010 May.
Article in English | MEDLINE | ID: mdl-20200239

ABSTRACT

During the transition from acute to chronic infection in individuals persistently infected with hepatitis C virus (HCV), cellular responses initiate within the first 6 months of primary infection and collapse thereafter, whereas humoral responses activate later during the chronic phase. Whether and how this deviation of immune responses specifically influences HCV evolution are unknown. To determine the pattern of HCV evolution during this critical period, we conducted extensive sequence analysis on annual clonal hemigenomic sequences for up to 3 years in six well-characterized subjects, using statistical methods that accounted for repeated measures. Significantly different evolutionary rates were observed in envelope versus nonenvelope genes, with an increasing rate of nonsynonymous change (dN) in envelope genes and a stable dN in nonenvelope genes (P = 0.006). The ratio of the envelope to nonenvelope nonsynonymous rate increased from 2 in year 1 to 5 in years 2 and 3. Centripetal changes (reversions toward matching of the worldwide subtype 1a consensus sequence) were frequently observed during the 3-year transition from acute infection to chronicity, even in the presence of neutralizing antibody (NAb) pressure. Remarkably, sequences of hypervariable region 1 (HVR1) remained stable for up to 21 months in the absence of NAb pressure in one subject, followed by rapid changes that were temporally associated with the detection of NAb responses, which strongly suggests that HVR1 evolution is shaped by NAb pressure. These data provide the first systematic estimates of HCV evolutionary rates in multiple genes during early infection in vivo and provide additional evidence for deterministic, rather than random, evolution of HCV.


Subject(s)
Evolution, Molecular , Hepacivirus/immunology , Hepatitis C/immunology , Hepatitis C/virology , Selection, Genetic , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Adult , Antibodies, Neutralizing/immunology , Cluster Analysis , Hepacivirus/genetics , Hepatitis C Antibodies/immunology , Humans , Longitudinal Studies , Molecular Sequence Data , Mutation, Missense , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Young Adult
17.
Gastroenterology ; 138(1): 315-24, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19782080

ABSTRACT

BACKGROUND & AIMS: We followed patients with ongoing hepatitis C virus (HCV) exposure following control of an initial HCV infection to determine whether primary control conferred protection against future persistent infections. METHODS: Twenty-two active injection drug users (IDU) who had cleared a primary hepatitis C viremia for at least 60 days were monitored monthly. Reinfection was defined as the detection of a new HCV infection. Protection was assessed based on the magnitude and duration of viremia following reinfection and generation of T-cell and neutralizing antibody (nAb) responses. RESULTS: Reinfection occurred in 11 IDU (50%) who previously spontaneously controlled primary HCV infection. Although viral clearance occurs in approximately 25% of patients with primary infections, spontaneous viral clearance was observed in 83% of reinfected patients. The duration and maximum level of viremia during subsequent episodes of reinfection were significantly decreased compared with those of the primary infection in the same subjects. In contrast to chronic infection, reinfection was associated with a significant increase in the breadth of T-cell responses. During acute infection, nAbs against heterologous viral pseudoparticles were detected in 60% of reinfected subjects; cross-reactive nAbs are rarely detected in patients who progress to chronic infection. CONCLUSIONS: HCV reinfection is associated with a reduction in the magnitude and duration of viremia (compared with the initial infection), broadened cellular immune responses, and generation of cross-reactive humoral responses. These findings are consistent with development of adaptive immunity that is not sterilizing but protects against chronic disease.


Subject(s)
Communicable Disease Control , Hepacivirus/immunology , Hepatitis C Antibodies/blood , Hepatitis C , Substance-Related Disorders/complications , Adult , Antibodies, Neutralizing/blood , Cross Reactions/immunology , Female , Hepacivirus/genetics , Hepatitis C/immunology , Hepatitis C/prevention & control , Hepatitis C/transmission , Humans , Male , Phylogeny , Secondary Prevention , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Envelope Proteins/genetics , Viral Load , Viremia/immunology , Viremia/prevention & control , Viremia/transmission , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...