Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 21(4): ar83, 2022 12.
Article in English | MEDLINE | ID: mdl-36318310

ABSTRACT

A systematic review of the literature was conducted to identify course-based undergraduate research experiences (CUREs) in science, technology, engineering, and math (STEM) courses within the years 2000 through 2020. The goals of this review were to 1) create a resource of STEM CUREs identified by their discipline, subdiscipline, and level; 2) determine the activities included in each CURE, particularly the primary components listed in the CURE definition as well as specific science practices we identified as key to scientific reasoning; and 3) identify the next steps needed in CURE creation and implementation. Our review found 242 CURE curricula described in 220 total articles, with most described in biology, although STEM disciplines, including chemistry and biochemistry, have begun to publish CURE curricula as well. We also found that most CUREs include the primary components. However, when we look at the specific science practices essential to scientific reasoning, we found that these are less common in many CUREs and are implemented differently. We encourage CURE authors to consider including these science practices and potentially measuring their impact on student outcomes. The present work provides a summary of the current published CUREs, their disciplines, course levels, primary components, and specific science practices.


Subject(s)
Engineering , Students , Humans , Engineering/education , Curriculum , Mathematics , Biochemistry/education
2.
Article in English | MEDLINE | ID: mdl-31160930

ABSTRACT

Case-based approaches have been used extensively in STEM classrooms to enhance the real-world applicability of course content. Prior research in the bioeducation field indicates, specifically, that such methods lead to increases in students' conceptual understanding and affect in the discipline relative to more traditional methods. Despite these outcomes, the majority of case study exercises are formatted in a generalist manner. In other words, the content and context of the case study itself are not framed around the communities in which the students live. In an effort to address this concern, we developed and implemented a series of place-based case study (PBCS) exercises within the introductory cell and molecular biology courses at our institutions. A comparative, quasi-experimental approach was used to evaluate the impact of PBCSs versus non-PBCSs on cognitive and non-cognitive student outcomes. Results indicated that both PBCSs and non-PBCSs led to increases in students' content knowledge; however, no statistically significant difference existed in post-exercise performance between the PBCS and non-PBCS cohorts at the University of Texas, for instance, after controlling for confounding factors. Importantly, data also revealed that students within the PBCS cohort agreed more strongly that the case studies provided them with a better understanding of how scientific advancements and research impacted the community in which they lived than did their peers in the non-PBCS cohort. Collectively, these outcomes suggest that PBCSs offer a scalable, classroom-based approach to engage students in relevant, practical experiences that are of direct interest to them and, ideally, the broader scientific community.

3.
CBE Life Sci Educ ; 18(2): mr2, 2019 06.
Article in English | MEDLINE | ID: mdl-31120396

ABSTRACT

Advancement of the scientific enterprise relies on individuals conducting research in an ethical and responsible manner. Educating emergent scholars in the principles of ethics/responsible conduct of research (E/RCR) is therefore critical to ensuring such advancement. The recent impetus to include authentic research opportunities as part of the undergraduate curriculum, via course-based undergraduate research experiences (CUREs), has been shown to increase cognitive and noncognitive student outcomes. Because of these important benefits, CUREs are becoming more common and often constitute the first research experience for many students. However, despite the importance of E/RCR in the research process, we know of few efforts to incorporate E/RCR education into CUREs. The Ethics Network for Course-based Opportunities in Undergraduate Research (ENCOUR) was created to address this concern and promote the integration of E/RCR within CUREs in the biological sciences and related disciplines. During the inaugural ENCOUR meeting, a four-pronged approach was used to develop guidelines for the effective integration of E/RCR in CUREs. This approach included: 1) defining appropriate student learning objectives; 2) identifying relevant curriculum; 3) identifying relevant assessments; and 4) defining key aspects of professional development for CURE facilitators. Meeting outcomes, including the aforementioned E/RCR guidelines, are described herein.


Subject(s)
Curriculum , Ethics, Research/education , Students , Universities , Guidelines as Topic , Humans , Learning
4.
Article in English | MEDLINE | ID: mdl-29904566

ABSTRACT

Evidence indicates that students who participate in scientific research during their undergraduate experience are more likely to pursue careers in the STEM disciplines and to develop increased scientific reasoning and literacy skills. One avenue to increase student engagement in research is via their enrollment in course-based undergraduate research experiences (CUREs), where they are able to conduct authentic research as part of the laboratory curriculum. The information presented herein provides an example of a CURE which was developed and implemented in an introductory cell and molecular biology course at the University of Northern Colorado. In addition to describing the Tigriopus CURE curriculum itself, we also present evidence regarding the effectiveness of the CURE in promoting students' development of confidence in science process skills, quantitative reasoning skills, and written communication skills. The curricular details of the Tigriopus CURE are provided in this article to provide instructors who are interested in CUREs the opportunity to implement this specific CURE in their own course.

5.
CBE Life Sci Educ ; 15(4)2016.
Article in English | MEDLINE | ID: mdl-27909022

ABSTRACT

Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities.


Subject(s)
Attitude , Biology/education , Curriculum , Knowledge , Motivation , Research/education , Students/psychology , Cooperative Behavior , Demography , Educational Measurement , Engineering/education , Female , Goals , Humans , Laboratories , Male , Mathematics/education , Program Development , Program Evaluation , Science/education , Technology/education
7.
J Molluscan Stud ; 68(2): 159-164, 2002 May.
Article in English | MEDLINE | ID: mdl-12011242

ABSTRACT

This study examines morphological and biochemical changes that occur as glochidia larvae of the freshwater mussel Utterbackia imbecillis (Say, 1829) metamorphose into juveniles. Metamorphosis encompasses two distinct stages. The first occurs during the first 3-4 days, and involves degeneration of the single larval adductor muscle and formation of the characteristic mushroom body by the larval mantle cells. These morphological changes are accompanied by an increase in DNA, RNA, and protein synthesis. The second stage occurs during the final 4 days of the metamorphic period and involves formation of the major anatomical structures and organ systems of the juveniles. This stage also is accompanied by an increase in DNA, RNA, and protein synthesis. The de novo development of the juvenile adductor muscles is described, and sites of DNA, RNA, and protein synthesis are identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...