Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(2): 330-340, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36597964

ABSTRACT

Magnetic beads have been widely and successfully used for target enrichment in life science assays. There exists a large variety of commercially available magnetic beads functionalized for specific target capture, as well as options that enable simple surface modifications for custom applications. While magnetic beads are ideal for use in the macrofluidic context of typical laboratory workflows, their performance drops in microfluidic contexts, such as consumables for point-of-care diagnostics. A primary cause is the diffusion-limited analyte transport in these low Reynolds number environments. A new method, BeadPak, uses magnetically actuatable microposts to enhance analyte transport, improving yield of the desired targets. Critical parameters were defined for the operation of this technology and its performance characterized in canonical life-science assays. BeadPak achieved up to 1000× faster capture than a microfluidic chamber relying on diffusion alone, enabled a significant specimen concentration via volume reduction, and demonstrated compatibility with a range of biological specimens. The results shown in this work can be extended to other systems that utilize magnetic beads for target capture, concentration, and/or purification.


Subject(s)
Microfluidic Analytical Techniques , Workflow , Microfluidics/methods , Immunomagnetic Separation , Magnetic Phenomena
2.
Biotechnol J ; 16(5): e2000257, 2021 May.
Article in English | MEDLINE | ID: mdl-33470052

ABSTRACT

Bioprocess optimization for cell-based therapies is a resource heavy activity. To reduce the associated cost and time, process development may be carried out in small volume systems, with the caveat that such systems be predictive for process scale-up. The transport of oxygen from the gas phase into the culture medium, characterized using the volumetric mass transfer coefficient, kL a, has been identified as a critical parameter for predictive process scale-up. Here, we describe the development of a 96-well microplate with integrated Redbud Posts to provide mixing and enhanced kL a. Mixing in the microplate is characterized by observation of dyes and analyzed using the relative mixing index (RMI). The kL a is measured via dynamic gassing out method. Actuating Redbud Posts are shown to increase rate of planar homogeneity (2 min) verse diffusion alone (120 min) and increase oxygenation, with increasing stirrer speed (3500-9000 rpm) and decreasing fill volume (150-350 µL) leading to an increase in kL a (4-88 h-1 ). Significant increase in Chinese Hamster Ovary growth in Redbud Labs vessel (580,000 cells mL-1 ) versus the control (420,000 cells mL-1 ); t(12.814) = 8.3678, p ≤ .001), and CD4+ Naïve cell growth in the microbioreactor indicates the potential for this technology in early stage bioprocess development and optimization.


Subject(s)
Bioreactors , Oxygen , Animals , CHO Cells , Cricetinae , Cricetulus , Culture Media
3.
Proc Natl Acad Sci U S A ; 117(43): 26749-26755, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33051295

ABSTRACT

Spatial patterns are ubiquitous in both physical and biological systems. We have recently discovered that mitotic chromosomes sequentially acquire two interesting morphological patterns along their structural axes [L. Chu et al., Mol. Cell, 10.1016/j.molcel.2020.07.002 (2020)]. First, axes of closely conjoined sister chromosomes acquire regular undulations comprising nearly planar arrays of sequential half-helices of similar size and alternating handedness, accompanied by periodic kinks. This pattern, which persists through all later stages, provides a case of the geometric form known as a "perversion." Next, as sister chromosomes become distinct parallel units, their individual axes become linked by bridges, which are themselves miniature axes. These bridges are dramatically evenly spaced. Together, these effects comprise a unique instance of spatial patterning in a subcellular biological system. We present evidence that axis undulations and bridge arrays arise by a single continuous mechanically promoted progression, driven by stress within the chromosome axes. We further suggest that, after sister individualization, this same stress also promotes chromosome compaction by rendering the axes susceptible to the requisite molecular remodeling. Thus, by this scenario, the continuous presence of mechanical stress within the chromosome axes could potentially underlie the entire morphogenetic chromosomal program. Direct analogies with meiotic chromosomes suggest that the same effects could underlie interactions between homologous chromosomes as required for gametogenesis. Possible mechanical bases for generation of axis stress and resultant deformations are discussed. Together, these findings provide a perspective on the macroscopic changes of organized chromosomes.


Subject(s)
Chromatin/chemistry , Chromosomes/chemistry , Mitosis/genetics , Morphogenesis/genetics , Cell Line , Chromatids/chemistry , Chromatids/genetics , Chromatids/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosomes/genetics , Chromosomes/metabolism , Humans
4.
Front Microbiol ; 9: 1469, 2018.
Article in English | MEDLINE | ID: mdl-30038602

ABSTRACT

Bacterial cells growing in steady state maintain a 1:1:1 relationship between an appropriate mass increase, a round of DNA replication plus sister chromosome segregation, and cell division. This is accomplished without the cell cycle engine found in eukaryotic cells. We propose here a formal logic, and an accompanying mechanism, for how such coordination could be provided in E. coli. Completion of chromosomal and divisome-related events would lead, interactively, to a "progression control complex" (PCC) which provides integrated physical coupling between sister terminus regions and the nascent septum. When a cell has both (i) achieved a sufficient mass increase, and (ii) the PCC has developed, a conformational change in the PCC occurs. This change results in "progression permission," which triggers both onset of cell division and release of terminus regions. Release of the terminus region, in turn, directly enables a next round of replication initiation via physical changes transmitted through the nucleoid. Division and initiation are then implemented, each at its own rate and timing, according to conditions present. Importantly: (i) the limiting step for progression permission may be either completion of the growth requirement or the chromosome/divisome processes required for assembly of the PCC; and, (ii) the outcome of the proposed process is granting of permission to progress, not determination of the absolute or relative timings of downstream events. This basic logic, and the accompanying mechanism, can explain coordination of events in both slow and fast growth conditions; can accommodate diverse variations and perturbations of cellular events; and is compatible with existing mathematical descriptions of the E. coli cell cycle. Also, while our proposition is specifically designed to provide 1:1:1 coordination among basic events on a "per-cell cycle" basis, it is a small step to further envision permission progression is also the target of basic growth rate control. In such a case, the rate of mass accumulation (or its equivalent) would determine the length of the interval between successive permission events and, thus, successive cell divisions and successive replication initiations.

5.
Lab Chip ; 15(5): 1385-93, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25592158

ABSTRACT

We present a novel technology for microfluidic elastometry and demonstrate its ability to measure stiffness of blood clots as they form. A disposable micro-capillary strip draws small volumes (20 µL) of whole blood into a chamber containing a surface-mounted micropost array. The posts are magnetically actuated, thereby applying a shear stress to the blood clot. The posts' response to magnetic field changes as the blood clot forms; this response is measured by optical transmission. We show that a quasi-static model correctly predicts the torque applied to the microposts. We experimentally validate the ability of the system to measure clot stiffness by correlating our system with a commercial thromboelastograph. We conclude that actuated surface-attached post (ASAP) technology addresses a clinical need for point-of-care and small-volume elastic haemostatic assays.


Subject(s)
Blood Coagulation , Microfluidic Analytical Techniques/instrumentation , Humans , Magnetics , Rheology , Stress, Mechanical , Surface Properties
6.
Curr Opin Microbiol ; 22: 127-37, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25460806

ABSTRACT

Recent studies reveal that the bacterial nucleoid has a defined, self-adherent shape and an underlying longitudinal organization and comprises a viscoelastic matrix. Within this shape, mobility is enhanced by ATP-dependent processes and individual loci can undergo ballistic off-equilibrium movements. In Escherichia coli, two global dynamic nucleoid behaviors emerge pointing to nucleoid-wide accumulation and relief of internal stress. Sister segregation begins with local splitting of individual loci, which is delayed at origin, terminus and specialized interstitial snap regions. Globally, as studied in several systems, segregation is a multi-step process in which internal nucleoid state plays critical roles that involve both compaction and expansion. The origin and terminus regions undergo specialized programs partially driven by complex ATP burning mechanisms such as a ParAB Brownian ratchet and a septum-associated FtsK motor. These recent findings reveal strong, direct parallels among events in different systems and between bacterial nucleoids and mammalian chromosomes with respect to physical properties, internal organization and dynamic behaviors.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Cell Cycle/physiology , Chromosome Segregation , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
7.
Cell ; 153(4): 882-95, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23623305

ABSTRACT

Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (1) Nucleoid density coalesces into longitudinal bundles, giving a stiff, low-DNA-density ellipsoid. (2) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and directs global nucleoid dynamics, including sister segregation. (3) Longitudinal density waves flux back and forth along the nucleoid, with 5%-10% of density shifting within 5 s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5%-15%. Pulses occur at 20 min intervals, at defined cell-cycle times. This progression includes sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intranucleoid mechanical stress. These effects could comprise a chromosome-based cell-cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics.


Subject(s)
Chromosomes, Bacterial , Escherichia coli/cytology , Escherichia coli/genetics , Biomechanical Phenomena , Cell Cycle , DNA Replication , DNA, Bacterial/physiology , Escherichia coli/physiology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...