Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(4): e9965, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038529

ABSTRACT

The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.

2.
Toxicology ; 481: 153340, 2022 11.
Article in English | MEDLINE | ID: mdl-36183849

ABSTRACT

Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24 h after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.


Subject(s)
Lung , Respiratory Mucosa , Rats , Humans , Animals , Respiratory Mucosa/metabolism , Administration, Inhalation , Aerosols/metabolism
3.
Arch Toxicol ; 87(11): 1911-1925, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23588252

ABSTRACT

Bromate (BrO3(-)), a by-product of ozonation of drinking water, induces nephrotoxicity in male rats at much lower doses than in female rats. This difference appears to be related to the development of α-2u-globulin nephropathy in males. To determine sex-dependent changes in mRNA and protein expression in the renal cortex attributable to α-2u-globulin nephropathy, we performed microarray and immunohistochemical analyses in proximal renal tubules of male and female F344 rats treated with KBrO3 for 28 days. Particular attention was paid to molecular biomarkers of renal tubular injury. Microarray analysis of male and female rats treated with BrO3(-) at low doses (125 mg/L KBrO3) displayed marked sex-dependent changes in renal gene expression. The greatest differences were seen in genes encoding for cellular differentiation, apoptosis, ion transport, and cell proliferation. Differences by sex were especially prominent for the cell cycle checkpoint gene p21, the renal injury protein Kim-1, and the kidney injury and cancer biomarker protein osteopontin. Dose-related nephrotoxicity, assessed by hematoxylin and eosin staining, was greater in males compared to female rats, as was cellular proliferation, assessed by bromodeoxyuridine staining. The fraction of proximal renal cells with elevated 8-oxodeoxyguanosine (8-OH-dG) was only increased at the high dose and did not differ by sex. Dose-dependent increases in the expression of osteopontin were detected immunohistochemically only in male rats and were localized in proximal tubule cells. Similarly, BrO3(-) treatment increased clusterin and Kim-1 staining in the proximal tubules; however, staining for these proteins did not differ appreciably between males and females. These data demonstrate both qualitative and quantitative differences in the response of male versus female kidneys to BrO3(-)-treatment. These sex-dependent effects likely contribute to renal carcinogenesis of BrO3(-) in the male rat.


Subject(s)
Bromates/toxicity , Kidney Cortex/metabolism , Protein Biosynthesis/drug effects , RNA, Messenger/biosynthesis , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Proliferation/drug effects , Clusterin/biosynthesis , Clusterin/genetics , Deoxyguanosine/analogs & derivatives , Female , Gene Expression/drug effects , Immunohistochemistry , Kidney Cortex/drug effects , Kidney Cortex/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Tubules/pathology , Male , Microarray Analysis , Oncogene Protein p21(ras)/biosynthesis , Oncogene Protein p21(ras)/genetics , Osteopontin/biosynthesis , Osteopontin/genetics , Polymerase Chain Reaction , Rats , Rats, Inbred F344
4.
Toxicol Sci ; 128(2): 317-25, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22552776

ABSTRACT

Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physiological processes, and their enzyme localization (apical vs. basolateral) in the plasma membrane allows for different cellular efflux pathways. In this study, we utilized an ATPase assay to evaluate BPA and BPA-G as potential substrates for the human and rat ABC transporters: P-glycoprotein (MDR1), multidrug resistance-associated proteins (MRPs), and breast cancer-resistant protein (BCRP). Based on high ATPase activity, BPA is likely a substrate for rat mdr1b but not for human MDR1 or rat mdr1a. Results indicate that BPA is a potential substrate for rat mrp2 and human MRP2, BCRP, and MRP3. The metabolite BPA-G demonstrated the highest apparent substrate binding affinity for rat mrp2 and human MRP3 but appeared to be a nonsubstrate or potential inhibitor for human MRP2, MDR1, and BCRP and for rat mdr1a, mdr1b, and bcrp. Analysis of ABC transporter amino acid sequences revealed key differences in putative binding site composition that may explain substrate specificity. Collectively, these results suggest that in both rat and human, apical transporters efflux BPA into the bile and/or intestinal lumen. BPA-G would follow a similar pathway in rat; however, in human, due to the basolateral location of MRP3, BPA-G would likely enter systemic and portal blood supplies. These differences between human and rodent ABC transporters may have significant implications for interspecies extrapolation used in risk assessment.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Benzhydryl Compounds/pharmacokinetics , Glucuronides/pharmacokinetics , Phenols/pharmacokinetics , Animals , Humans , Multidrug Resistance-Associated Protein 2 , Rats , Species Specificity
5.
Physiol Behav ; 94(4): 586-94, 2008 Jul 05.
Article in English | MEDLINE | ID: mdl-18486158

ABSTRACT

Obesity results from a number of factors including socio-environmental influences and rodent models show that several different stressors increase the preference for calorically dense foods leading to an obese phenotype. We present here a non-human primate model using socially housed adult female macaques living in long-term stable groups given access to diets of different caloric density. Consumption of a low fat (LFD; 15% of calories from fat) and a high fat diet (HFD; 45% of calories from fat) was quantified by means of a custom-built, automated feeder that dispensed a pellet of food when activated by a radiofrequency chip implanted subcutaneously in the animal's wrist. Socially subordinate females showed indices of chronic psychological stress having reduced glucocorticoid negative feedback and higher frequencies of anxiety-like behavior. Twenty-four hour intakes of both the LFD and HFD were significantly greater in subordinates than dominates, an effect that persisted whether standard monkey chow (13% of calories from fat) was present or absent. Furthermore, although dominants restricted their food intake to daylight, subordinates continued to feed at night. Total caloric intake was significantly correlated with body weight change. Collectively, these results show that food intake can be reliably quantified in non-human primates living in complex social environments and suggest that socially subordinate females consume more calories, suggesting this ethologically relevant model may help understand how psychosocial stress changes food preferences and consumption leading to obesity.


Subject(s)
Dominance-Subordination , Eating/psychology , Feeding Behavior/psychology , Social Environment , Stress, Psychological/psychology , Analysis of Variance , Animals , Circadian Rhythm , Energy Intake , Female , Macaca mulatta
6.
Toxicology ; 221(2-3): 235-40, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-16500013

ABSTRACT

Bromate is a known animal carcinogen that is found in drinking water supplies treated with ozone. Bromate targets the kidney for toxicity and cancer, the peritoneum for cancer (mesotheliomas derived from testes), testes for lowered sperm count and the thyroid for follicular cell cancer. Kidney tumors as well as other toxicities may be caused by the metabolism of bromate to reactive intermediates. There is evidence that bromate and its stable metabolite bromide are actively transported by the sodium iodide transporter (NIS) protein found in the thyroid, kidney and testes. This association strongly suggests that characterizing the preferential distribution of bromate into the NIS-rich tissues and its subsequent metabolism to reactive metabolites is important for interpreting the dose-response characteristics of bromate in rodents. In this paper the current evidence for NIS dependent dosimetry for bromate is developed and studies are proposed to develop a physiologically based pharmacokinetic (PBPK) model for bromate. The recent PBPK models describing NIS protein transport of perchlorate and radiolabeled iodide offer a template for the development of the bromate model in rodents and humans. The proposed research is expected to be instrumental in quantifying the human health risks associated with ingestion of low levels of bromate in drinking water.


Subject(s)
Bromates/blood , Models, Biological , Water Supply/standards , Animals , Bromates/pharmacokinetics , Bromides/blood , Bromides/pharmacokinetics , Rats , Rats, Inbred F344
7.
Arch Environ Occup Health ; 60(6): 314-6, 2005.
Article in English | MEDLINE | ID: mdl-17447576

ABSTRACT

School officials and community citizens in Georgia were concerned about the airborne trichloroethylene (TCE) that was emanating from a nearby industrial facility that used TCE as a degreaser. No measurements of airborne TCE in the community were taken by public health officials or the industrial facility. The regulation of release of TCE from this facility was governed, in part, by mathematical model predictions of dispersion into the community. In support of community health concerns, the authors collected a limited number of outdoor and indoor air samples in the affected community, including those from a school, a small business, and three homes, for the analysis of TCE. The mean outdoor air concentration of TCE for all affected sites was 0.96 microg/m3 with a peak TCE concentration of 4.59 microg/m3. The mean indoor air concentration of TCE for all affected sites was 1.40 microg/m3 with a peak TCE concentration of 4.66 microg/m3. All collected air samples were below the guideline level of 5 microg TCE/m3 of air as used by the state of Georgia in the United States, but sample levels were greater than those found in large population studies of TCE in indoor and outdoor air in Minnesota in the United States and in Ottawa in Canada. Additional air samples are needed to better characterize the exposure of the community to TCE.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Trichloroethylene/analysis , Georgia , Humans , Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...