Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 8(8): e72320, 2013.
Article in English | MEDLINE | ID: mdl-23991090

ABSTRACT

Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11) with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001) energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P<0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (P<0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7) was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.


Subject(s)
Adiposity , Diet, Protein-Restricted , Energy Intake , Swine/metabolism , Animals , Area Under Curve , Blood Glucose/analysis , Body Composition , Female , Glucose Tolerance Test , Insulin/blood , Swine/genetics
3.
Am J Physiol Renal Physiol ; 303(9): F1353-62, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22811489

ABSTRACT

Acid-secreting intercalated cells respond to changes in systemic pH through regulation of apical H(+) transporters. Little is known about the mechanism by which these cells sense changes in extracellular pH (pH(o)). Pyk2 is a nonreceptor tyrosine kinase activated by autophosphorylation at Tyr402 by cell-specific stimuli, including decreased pH, and is involved in the regulation of MAPK signaling pathways and transporter activity. We examined whether the Pyk2 and MAPK signaling pathway mediates the response of transport proteins to decreased pH in outer medullary collecting duct cells. Immunoblot analysis of phosphorylated Pyk2 (Tyr402), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) was used to assay protein activation. To examine specificity of kinase activation and its effects, we used Pyk2 small interfering RNA to knockdown Pyk2 expression levels, the Src kinase inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP 1) to inhibit Pyk2 phosphorylation, and the MEK inhibitor U0126 to inhibit ERK1/2 phosphorylation. The pH-sensitive fluorescent probe 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (BCECF-AM) was used to assay H(+) transporter activity. The activity of H(+) transporters was measured as the rate of intracellular pH (pH(i)) recovery after an NH(4)Cl prepulse. We show that Pyk2 is endogenously expressed and activated by acid pH in mouse-derived outer medullary collecting duct (mOMCD1) cells. Incubation of mOMCD1 cells in acid media [extracellular pH (pH(o)) 6.7] increased the phosphorylation of Pyk2, ERK1/2, and p38. Reduction in pH(i) induced by an NH(4)Cl prepulse also increased the phosphorylation of Pyk2, ERK1/2, and p38. Consistent with our previous studies, we found that mOMCD1 cells exhibit H(+)-ATPase and H(+),K(+)-ATPase activity. Pyk2 inhibition by Pyk2 siRNA and PP 1 prevented Pyk2 phosphorylation as well as H(+)-ATPase-mediated recovery in mOMCD1 cells. In addition, ERK1/2 inhibition by U0126 prevented acid-induced ERK1/2 phosphorylation and H(+)-ATPase-mediated pH(i) recovery but not phosphorylation of p38. We conclude that Pyk2 and ERK1/2 are required for increasing H(+)-ATPase, but not H(+),K(+)-ATPase, activity at decreased pH(i) in mOMCD1 cells.


Subject(s)
Focal Adhesion Kinase 2/physiology , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , MAP Kinase Signaling System/physiology , Proton-Translocating ATPases/physiology , Protons , Ammonium Chloride/pharmacology , Animals , Butadienes/pharmacology , Cell Line , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kidney Medulla/cytology , Kidney Medulla/drug effects , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , MAP Kinase Signaling System/drug effects , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Animal , Nitriles/pharmacology , Phosphorylation/drug effects , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA, Small Interfering/pharmacology
4.
Org Lett ; 4(11): 1931-4, 2002 May 30.
Article in English | MEDLINE | ID: mdl-12027650

ABSTRACT

[reaction: see text] Treatment of alkynyl allenes with [Rh(CO)(2)Cl](2) results in a formal [2 + 2 + 1] cycloaddition reaction. This reaction occurs with complete regioselectivity for a variety of substrates affording only 4-alkylidene cyclopentenones in good yields. Moreover, seven-membered rings have been prepared in high yields.


Subject(s)
Alkadienes/chemistry , Crystallography, X-Ray , Cyclization , Indicators and Reagents , Models, Molecular , Molecular Conformation , Silicones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...