Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317743

ABSTRACT

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Subject(s)
Biological Ontologies , Animals , Gene Ontology , Humans , Phenotype , Xenopus laevis
2.
Front Physiol ; 10: 154, 2019.
Article in English | MEDLINE | ID: mdl-30863320

ABSTRACT

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

3.
Methods Mol Biol ; 1757: 251-305, 2018.
Article in English | MEDLINE | ID: mdl-29761462

ABSTRACT

Xenbase is the Xenopus model organism database ( www.xenbase.org ), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.


Subject(s)
Databases, Genetic , Gene Expression , Genome , Genomics , Xenopus laevis/genetics , Animals , Computational Biology/methods , Gene Ontology , Genomics/methods , Software , User-Computer Interface , Web Browser
4.
Science ; 347(6225): 1010-4, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25678556

ABSTRACT

Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.


Subject(s)
Cell Differentiation/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Stem Cells/cytology , Transcription Factors/metabolism , Transcription, Genetic , Animals , Binding Sites , Cattle , Dogs , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Stem Cells/metabolism
5.
Cell ; 153(1): 101-11, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540693

ABSTRACT

LINE-1 (L1) retrotransposons are mobile genetic elements comprising ~17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic ß-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2(-/-) mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Mutational Analysis , Genes, Tumor Suppressor , Liver Neoplasms/genetics , Long Interspersed Nucleotide Elements , Mutagenesis, Insertional , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Aged , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Humans , Male , Mice , Middle Aged , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , ATP-Binding Cassette Sub-Family B Member 4
6.
Dev Biol ; 317(1): 13-23, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18355805

ABSTRACT

Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using whole amount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.


Subject(s)
Extremities/embryology , Gene Expression Regulation, Developmental , Genomics , Technology , Tomography/methods , Animals , Chick Embryo , Databases as Topic , In Situ Hybridization
7.
Development ; 129(6): 1307-15, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11880340

ABSTRACT

This paper addresses the molecular mechanisms that regulate the transcriptional activation of the myogenic regulatory factor XmyoD in the skeletal muscle lineage of Xenopus laevis. Using antisense morpholino oligonucleotide-mediated inhibition, we show that the signalling molecule embryonic fibroblast growth factor (eFGF), which is the amphibian homologue of FGF4, is necessary for the initial activation of XmyoD transcription in myogenic cells. We demonstrate that eFGF can activate the expression of XmyoD in the absence of protein synthesis, indicating that this regulation is direct. Our data suggest that regulation of XmyoD expression may involve a labile transcriptional repressor. In addition, we show that eFGF is itself an immediate early response to activin, a molecule that mimics the endogenous mesoderm-inducing signal. We propose a model for the regulation of XmyoD within the early mesoderm, and discuss the relevance that these findings have for the understanding of myogenic specification in higher vertebrates.


Subject(s)
Cell Lineage/genetics , Fibroblast Growth Factors/genetics , Muscle Development/genetics , Muscle, Skeletal/growth & development , MyoD Protein/genetics , Xenopus laevis/genetics , Animals , Muscle Development/physiology , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...