Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Allergy Immunol ; 32(3): 566-575, 2021 04.
Article in English | MEDLINE | ID: mdl-33098103

ABSTRACT

BACKGROUND: Phosphoglucomutase-3 (PGM3) deficiency is a congenital disorder of glycosylation (CDG) with hyperimmunoglobulin IgE, atopy, and a variable immunological phenotype; most reported patients display dysmorphic features. The aim of the study was to characterize the genotype and phenotype of individuals with newly identified compound heterozygous variants in the phosphate-binding domain of PGM3 in order to better understand phenotypic differences between these patients and published cases. METHODS: We analyzed PGM3 protein expression, PGM3 enzymatic activity, the presence of other gene variants within the N-glycosylation pathway, and the clinical and immunological manifestations of two affected siblings. RESULTS: Patients belonged to a non-consanguineous family, presenting with atopic dermatitis, elevated levels of IgE, and CD4+ lymphopenia (a more severe phenotype was observed in Patient 2), but lacked dysmorphic features or neurocognitive impairment. Compound heterozygous PGM3 variants were identified, located in the phosphate-binding domain of the enzyme. PGM3 expression was comparable to healthy donors, but L-PHA binding in naïve-CD4+ cells was decreased. Examination of exome sequence identified the presence of one additional candidate variant of unknown significance (VUS) in the N-glycosylation pathway in Patient 2: a variant predicted to have moderate-to-high impact in ALG12. CONCLUSIONS: Our analysis revealed that L-PHA binding is reduced in naïve-CD4+ cells, which is consistent with decreased residual PGM3 enzymatic activity. Other gene variants in the N-glycosylation pathway may modify patient phenotypes in PGM3 deficiency. This study expands the clinical criteria for when PGM3 deficiency should be considered among individuals with hyper-IgE.


Subject(s)
Dermatitis , Lymphopenia , Humans , Immunoglobulin E , Mutation , Phenotype , Phosphoglucomutase/genetics
2.
Immunohorizons ; 4(3): 119-128, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144186

ABSTRACT

The RAG1 and RAG2 proteins are essential for the assembly of Ag receptor genes in the process known as VDJ recombination, allowing for an immense diversity of lymphocyte Ag receptors. Congruent with their importance, RAG1 and RAG2 have been a focus of intense study for decades. To date, RAG1 has been studied as a single isoform; however, our identification of a spontaneous nonsense mutation in the 5' region of the mouse Rag1 gene lead us to discover N-truncated RAG1 isoforms made from internal translation initiation. Mice homozygous for the RAG1 nonsense mutation only express N-truncated RAG1 isoforms and have defects in Ag receptor rearrangement similar to human Omenn syndrome patients with truncating 5' RAG1 frameshift mutations. We show that the N-truncated RAG1 isoforms are derived from internal translation initiation start sites. Given the seemingly inactivating Rag1 mutation, it is striking that homozygous mutant mice do not have the expected SCID. We propose that evolution has garnered RAG1 and other important genes with the ability to form truncated proteins via internal translation to minimize the deleterious effects of 5' nonsense mutations. This mechanism of internal translation initiation is particularly important to consider when interpreting nonsense or frameshift mutations in whole-genome sequencing, as such mutations may not lead to loss of protein.


Subject(s)
Codon, Nonsense , Genes, RAG-1 , Homeodomain Proteins/genetics , Animals , Disease Models, Animal , HEK293 Cells , Homozygote , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Chain Initiation, Translational/genetics , Protein Isoforms , Severe Combined Immunodeficiency/genetics , Transfection , V(D)J Recombination/genetics
4.
J Immunol ; 198(7): 2943-2956, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28213501

ABSTRACT

Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.


Subject(s)
DNA Breaks, Double-Stranded , Gene Expression Regulation/immunology , Lymphoid Progenitor Cells/metabolism , Animals , Blotting, Southern , Blotting, Western , DNA-Binding Proteins/metabolism , Flow Cytometry , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription, Genetic , V(D)J Recombination/genetics
5.
Cell Cycle ; 15(21): 2882-2894, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27327568

ABSTRACT

Mammalian cells are thought to protect themselves and their host organisms from DNA double strand breaks (DSBs) through universal mechanisms that restrain cellular proliferation until DNA is repaired. The Cyclin D3 protein drives G1-to-S cell cycle progression and is required for proliferation of immature T and B cells and of mature B cells during a T cell-dependent immune response. We demonstrate that mouse thymocytes and pre-B cells, but not mature B cells, repress Cyclin D3 protein levels in response to DSBs. This response requires the ATM protein kinase that is activated by DSBs. Cyclin D3 protein loss in thymocytes coincides with decreased association of Cyclin D3 mRNA with the HuR RNA binding protein that ATM regulates. HuR inactivation reduces basal Cyclin D3 protein levels without affecting Cyclin D3 mRNA levels, indicating that thymocytes repress Cyclin D3 expression via ATM-dependent inhibition of Cyclin D3 mRNA translation. In contrast, ATM-dependent transcriptional repression of the Cyclin D3 gene represses Cyclin D3 protein levels in pre-B cells. Retrovirus-driven Cyclin D3 expression is resistant to transcriptional repression by DSBs; this prevents pre-B cells from suppressing Cyclin D3 protein levels and from inhibiting DNA synthesis to the normal extent following DSBs. Our data indicate that immature B and T cells use lymphocyte lineage- and developmental stage-specific mechanisms to inhibit Cyclin D3 protein levels and thereby help prevent cellular proliferation in response to DSBs. We discuss the relevance of these cellular context-dependent DSB response mechanisms in restraining proliferation, maintaining genomic integrity, and suppressing malignant transformation of lymphocytes.


Subject(s)
Cell Lineage , Cyclin D3/genetics , DNA Breaks, Double-Stranded , Growth and Development , Lymphocytes/cytology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/radiation effects , Cell Lineage/genetics , Cell Lineage/radiation effects , Cell Proliferation/radiation effects , Cyclin D3/metabolism , DNA/biosynthesis , DNA Breaks, Double-Stranded/radiation effects , Down-Regulation/radiation effects , ELAV-Like Protein 1/metabolism , Growth and Development/genetics , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiation, Ionizing , Retroviridae/metabolism , Signal Transduction/radiation effects , Substrate Specificity/radiation effects , T-Lymphocytes/cytology , T-Lymphocytes/radiation effects , Transcription, Genetic/radiation effects
7.
J Immunol ; 193(6): 2881-90, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25127855

ABSTRACT

Coordination of V rearrangements between loci on homologous chromosomes is critical for Ig and TCR allelic exclusion. The Ataxia Telangietasia mutated (ATM) protein kinase promotes DNA repair and activates checkpoints to suppress aberrant Ig and TCR rearrangements. In response to RAG cleavage of Igκ loci, ATM inhibits RAG expression and suppresses further Vκ-to-Jκ rearrangements to enforce Igκ allelic exclusion. Because V recombination between alleles is more strictly regulated for TCRß and IgH loci, we evaluated the ability of ATM to restrict biallelic expression and V-to-DJ recombination of TCRß and IgH genes. We detected greater frequencies of lymphocytes with biallelic expression or aberrant V-to-DJ rearrangement of TCRß or IgH loci in mice lacking ATM. A preassembled DJß complex that decreases the number of TCRß rearrangements needed for a productive TCRß gene further increased frequencies of ATM-deficient cells with biallelic TCRß expression. IgH and TCRß proteins drive proliferation of prolymphocytes through cyclin D3 (Ccnd3), which also inhibits VH transcription. We show that inactivation of Ccnd3 leads to increased frequencies of lymphocytes with biallelic expression of IgH or TCRß genes. We also show that Ccnd3 inactivation cooperates with ATM deficiency to increase the frequencies of cells with biallelic TCRß or IgH expression while decreasing the frequency of ATM-deficient lymphocytes with aberrant V-to-DJ recombination. Our data demonstrate that core components of the DNA damage response and cell cycle machinery cooperate to help enforce IgH and TCRß allelic exclusion and indicate that control of V-to-DJ rearrangements between alleles is important to maintain genomic stability.


Subject(s)
Cyclin D3/genetics , DNA Repair/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Proliferation , Cyclin D3/antagonists & inhibitors , DNA Damage , DNA Repair/immunology , Homeodomain Proteins/biosynthesis , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/genetics , Immunoglobulin J-Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin delta-Chains/genetics , Immunoglobulin kappa-Chains/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/immunology , VDJ Exons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...