Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
Article in English | MEDLINE | ID: mdl-38801005

ABSTRACT

Flatworms are among the best studied animal models for regeneration; however, they also represent an emerging opportunity to investigate other biological processes as well. For instance, flatworms are nocturnal and sleep during the day, a state that is regulated by sleep/wake history and the action of the sleep-promoting neurotransmitter gamma-aminobutyric acid (or GABA). Sleep is widespread across the animal kingdom, where it serves many nonexclusive functions. Notably, sleep saves energy by reducing metabolic rate and by not doing something more energetically taxing. Whether the conservation of energy is apparent in sleeping flatworms is unclear. We measured the oxygen consumption rate (OCR) of flatworms dosed with either (1) GABA (n = 29) which makes flatworms inactive or (2) dopamine (n = 20) which stimulates flatworms to move, or (3) day and night neurotransmitter-free controls (n = 28 and 27, respectively). While OCR did not differ between the day and night, flatworms treated with GABA used less oxygen than those treated with dopamine, and less than the day-time control. Thus, GABA affected flatworm physiology, ostensibly by enforcing energy-conserving sleep. Evidence that dopamine increased metabolism was less strong. This work broadens our understanding of flatworm physiology and expands the phylogenetic applicability of energy conservation as a function of sleep.

2.
Genet Med ; : 101166, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38767059

ABSTRACT

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in four siblings. METHODS: We identified five individuals from three unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data sheds light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

3.
J Cell Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775127

ABSTRACT

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

4.
Cells ; 13(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38607049

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Subject(s)
Dictyostelium , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Dictyostelium/metabolism , TRPP Cation Channels/genetics , Calcium/metabolism , Calcium Signaling/physiology , Calcium Channels/metabolism
5.
PLoS One ; 19(1): e0296153, 2024.
Article in English | MEDLINE | ID: mdl-38165954

ABSTRACT

Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.


Subject(s)
Collagen , Cell Movement , Collagen/pharmacology
6.
Neuro Oncol ; 26(1): 178-190, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37503880

ABSTRACT

BACKGROUND: High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS: A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS: Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS: HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.


Subject(s)
Brain Neoplasms , Glioma , Child , Infant , Humans , Child, Preschool , Retrospective Studies , Prospective Studies , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Glioma/drug therapy , Glioma/genetics , Glioma/diagnosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics
7.
Behav Cogn Psychother ; 52(2): 135-148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37545324

ABSTRACT

AIM: Staff retention, particularly in the Psychological Wellbeing Practitioner (PWP) workforce, has historically been challenging for Improving Access to Psychological Therapy (IAPT) services. This study sought to develop an explanatory model of the resilience-building process in PWPs working within the IAPT programme. METHOD: A qualitative design was conducted, using a grounded theory methodology. Participants were recruited from two IAPT services in the National Health Service (NHS), which were part of the same Mental Health Trust. Ten PWPs were interviewed via videoconferencing using semi-structured interviews. RESULTS: An explanatory model of resilience in PWPs encompassed three phases: the experience of work-related challenges, the connection with their values and the related appraisal of adversity in resilient ways, and the implementation of effective coping strategies. CONCLUSIONS: The model highlights that PWPs develop resilience through values-based sensemaking and by proactively engaging in effective coping mechanisms. This study contributes to the current understanding of the process of resilience in PWPs. More research is needed to explore the developmental processes underlying PWPs' resilience. The implications of the findings in relation to existing conceptualisations of resilience, staff wellbeing and retention are explored. Recommendations for future research are also given.


Subject(s)
Resilience, Psychological , Humans , State Medicine , Grounded Theory , Qualitative Research , Depression/psychology
8.
Methods Mol Biol ; 2746: 1-20, 2024.
Article in English | MEDLINE | ID: mdl-38070076

ABSTRACT

The mitochondria are essential to eukaryotic life, acting as key drivers of energy generation while also being involved in the regulation of many cellular processes including apoptosis, cell proliferation, calcium homeostasis, and metabolism. Mitochondrial diseases which disrupt these processes lead to a diverse range of pathologies and lack consistency in symptom presentation. In disease, mitochondrial activity and energy homeostasis can be adapted to cellular requirements, and studies using Dictyostelium and human lymphoblastoid cell lines have shown that such changes can be facilitated by the key cellular and energy regulators, TORC1 and AMPK. Fluorescence-based assays are increasingly utilized to measure mitochondrial and cell signalling function in mitochondrial disease research. Here, we describe a streamlined method for the simultaneous measurement of mitochondrial mass, membrane potential, and reactive oxygen species production using MitoTracker Green™ FM, MitoTracker Red™ CMXRos, and DCFH-DA probes. This protocol has been adapted for both Dictyostelium and human lymphoblastoid cell lines. We also describe a method for assessing TORC1 and AMPK activity simultaneously in lymphoblastoid cells. These techniques allow for the characterization of mitochondrial defects in a rapid and easy to implement manner.


Subject(s)
Dictyostelium , Mitochondrial Diseases , Humans , AMP-Activated Protein Kinases/metabolism , Dictyostelium/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Reactive Oxygen Species/metabolism , Phenotype , Mechanistic Target of Rapamycin Complex 1/metabolism
9.
Mol Neurobiol ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015302

ABSTRACT

Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.

10.
Neurooncol Adv ; 5(1): vdad130, 2023.
Article in English | MEDLINE | ID: mdl-37964897

ABSTRACT

Background: Although CNS tumors are the most common pediatric cancer in the United States, most physicians caring for these patients are not formally certified in the subspecialty. To determine support for developing a formal certification process in pediatric neuro-oncology, the Society for Neuro-Oncology's Pediatrics Special Interest Track Training and Credentialing working group performed a cross-sectional survey-based study of physicians and patients/caregivers of children with a CNS tumor history. Methods: Surveys were built in Survey Monkey and were available for 3 months. The physician survey had 34 questions and was open to doctors currently caring for pediatric neuro-oncology patients. The patient/caregiver survey had 13 questions. Both surveys were completed anonymously. Results: The physician survey was completed by 193 participants, the majority of whom self-identified as oncologists. Only 5.6% of survey participants had ever been board-certified in neuro-oncology; the majority of participating physicians were either unaware that this certification existed or thought they were not eligible due to training in pediatrics rather than neurology or internal medicine. Almost half of the self-identified pediatric neuro-oncologists had not completed any specific clinical neuro-oncology training. Over 75% of physicians were supportive of the implementation of a formal certification process in pediatric neuro-oncology. A total of 30 participants completed the patient/caregiver survey. Although the majority of survey participants were highly satisfied with their oncologist, 70% would have been more comfortable if their oncologist had been specifically certified in pediatric neuro-oncology. Conclusions: There is support from physicians, patients, and caregivers to establish a formal certification process in pediatric neuro-oncology.

11.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37935566

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS: The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS: Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS: In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/therapeutic use , Cytoplasm/metabolism , Cytoplasm/pathology , Mice, Transgenic , Pancreatic Neoplasms/metabolism , Poly C/therapeutic use , STAT1 Transcription Factor/metabolism , Tumor Microenvironment
12.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922327

ABSTRACT

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Subject(s)
Bone Neoplasms , Melanoma , Prostatic Neoplasms , Male , Humans , Syntenins/genetics , Syntenins/metabolism , Melanoma/metabolism , Prostatic Neoplasms/genetics , Signal Transduction/genetics , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Neoplasm Metastasis
13.
Mol Ther Nucleic Acids ; 34: 102070, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38034030

ABSTRACT

Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs. ID-VEP generated potent humoral and cellular immune responses across multiple studies, while vacuum (without EP) greatly enhanced localized transfection but did not improve immunogenicity. Because EP was performed noninvasively, the only treatment site reaction observed was transient redness, and ID-VEP immune responses were comparable to a clinical needle-based ID-EP device. The ID-VEP delivery procedure is straightforward and highly repeatable, without any dependence on operator technique. This work demonstrates a novel, reliable, and needle-free delivery method for DNA vaccines.

15.
Mol Syst Biol ; 19(11): e11670, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37815040

ABSTRACT

Cells have evolved their communication methods to sense their microenvironments and send biological signals. In addition to communication using ligands and receptors, cells use diverse channels including gap junctions to communicate with their immediate neighbors. Current approaches, however, cannot effectively capture the influence of various microenvironments. Here, we propose a novel approach to investigate cell neighbor-dependent gene expression (CellNeighborEX) in spatial transcriptomics (ST) data. To categorize cells based on their microenvironment, CellNeighborEX uses direct cell location or the mixture of transcriptome from multiple cells depending on ST technologies. For each cell type, CellNeighborEX identifies diverse gene sets associated with partnering cell types, providing further insight. We found that cells express different genes depending on their neighboring cell types in various tissues including mouse embryos, brain, and liver cancer. Those genes are associated with critical biological processes such as development or metastases. We further validated that gene expression is induced by neighboring partners via spatial visualization. The neighbor-dependent gene expression suggests new potential genes involved in cell-cell interactions beyond what ligand-receptor co-expression can discover.


Subject(s)
Liver Neoplasms , Transcriptome , Animals , Mice , Transcriptome/genetics , Gene Expression Profiling , Brain , Cell Communication , Tumor Microenvironment
16.
Adv Cancer Res ; 160: 253-315, 2023.
Article in English | MEDLINE | ID: mdl-37704290

ABSTRACT

Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Oncogenes , Immunotherapy , Epigenomics
17.
Mol Cancer Ther ; 22(10): 1115-1127, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721536

ABSTRACT

Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.


Subject(s)
Melanoma , Animals , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Syntenins/chemistry , Signal Transduction , Peptides/metabolism
18.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722058

ABSTRACT

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Subject(s)
Carnitine O-Palmitoyltransferase , Neoplasms , Humans , Carnitine O-Palmitoyltransferase/genetics , Cytotoxicity, Immunologic , Fatty Acids , Lipid Metabolism , Neoplasms/therapy , T-Lymphocytes, Cytotoxic
19.
Sci Total Environ ; 899: 165481, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37442482

ABSTRACT

Cryptosporidium oocysts pose a significant threat to public health due to its ability to contaminate environmental waters, leading to outbreaks of waterborne diseases and emphasizing the crucial need for effective water treatment and monitoring systems. This study aimed to investigate the decay of Cryptosporidium oocyst DNA in cow fecal matter under different environmental conditions prevalent in sub-tropical Southeast Queensland (SEQ) during summer and winter seasons. The effects of ambient sunlight and shaded conditions on the decay rates of C. parvum DNA in cow fecal samples were evaluated. The results showed that measurable levels of C. parvum DNA were observed for up to 60 days during the summer experiments, with a slower decay rate on the surface (k = -0.029) and sub-surface (k = -0.043) of the cowpat under shaded conditions than those on the surface (k = -0.064) and sub-surface (k = -0.079) under sunlight conditions. The decay rates of C. parvum DNA on the surface and sub-surface of the cowpat under shaded conditions were significantly slower (p = 0.004; p = 0.004) than those on the surface and sub-surface under sunlight conditions during summer experiments. During the winter treatments, measurable levels of C. parvum DNA were observed for up to 90 days, and the decay rates were slower on the surface (k = -0.036) and sub-surface (k = -0.034) of the cowpat under shaded conditions than those under sunlight conditions (k = -0.067 for surface and k = -0.057 for sub-surface). The decay rates of C. parvum DNA on the surface and sub-surface of the cowpat under shaded conditions were significantly slower than those on the surface (p = 0.009) and sub-surface (p = 0.041) under sunlight conditions during winter experiments. Moreover, the decay rate in the summer sunlight surface treatment (k = -0.064) was significantly faster from those in the winter shaded surface (k = -0.036; p = 0.018) and sub-surface (k = -0.034; p = 0.011) treatments. Similar results were also observed for summer sunlight sub-surface (k = -0.079), which was significantly faster than winter shaded surface (k = -0.036; p = 0.0008) and sub-surface (k = -0.034; p = 0.0005) treatments. Overall, these findings are important to enhance our understanding on the degradation of C. parvum DNA in cow fecal matter in SEQ, particularly in relation to seasonal variations and environmental conditions.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Water Purification , Animals , Water Purification/methods , Sunlight , Oocysts
20.
Adv Cancer Res ; 159: 285-341, 2023.
Article in English | MEDLINE | ID: mdl-37268399

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...