Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chall ; 7(10): 2300158, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37829682

ABSTRACT

Over 60 million tons of E-waste is expected to be generated in 2023, with associated significant impacts on health and the environment. To reduce the number of products sent to landfills, "Right to Repair" (RtR) movements are gaining momentum in many countries, including the UK, USA, and EU member states. While Universities are seen as important stakeholders to drive forward sustainable design practices, there is currently little work looking at training undergraduate design engineers in the principles of designing household products in support of RtR. In particular, the project-based learning (PBL) pedagogy shows promise in engaging and training students with the skills and knowledge required to successfully design products for RtR. In this paper, a pilot-study of teaching engineers is presented to design products compatible with RtR principles, alongside many technical skills, in a first-year PBL course. The key outputs of this paper are the design of the module, which can be used to help inform first-year engineering education, the high engagement of students, with 100% of respondents agreeing that they intend to try to implement sustainable design practices in future, and some of the innovative features that students implement in their projects.

2.
ACS Omega ; 8(9): 8407-8414, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910974

ABSTRACT

Sepsis is the body's response to an infection. Existing diagnostic testing equipment is not available in primary care settings and requires long waiting times. Lateral flow devices (LFDs) could be employed in point-of-care (POC) settings for sepsis detection; however, they currently lack the required sensitivity. Herein, LFDs are constructed using 150-310 nm sized selenium nanoparticles (SeNPs) and are compared to commercial 40 nm gold nanoparticles (AuNPs) for the detection of the sepsis biomarker interleukin-6 (IL-6). Both 310 and 150 nm SeNPs reported a lower limit of detection (LOD) than 40 nm AuNPs (0.1 ng/mL compared to 1 ng/mL), although at the cost of test line visual intensity. This is to our knowledge the first use of larger SeNPs (>100 nm) in LFDs and the first comparison of the effect of the size of SeNPs on assay sensitivity in this context. The results herein demonstrate that large SeNPs are viable alternatives to existing commercial labels, with the potential for higher sensitivity than standard 40 nm AuNPs.

3.
Materials (Basel) ; 15(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36556835

ABSTRACT

Polycaprolactone (PCL) is a well-established biomaterial, offering extensive mechanical attributes along with low cost, biocompatibility, and biodegradability; however, it lacks hydrophilicity, bioactivity, and electrical conductivity. Advances in 3D fabrication technologies allow for these sought-after attributes to be incorporated into the scaffolds during fabrication. In this study, solvent-free Fused Deposition Modelling was employed to fabricate 3D scaffolds from PCL with increasing amounts of graphene (G), in the concentrations of 0.75, 1.5, 3, and 6% (w/w). The PCL+G scaffolds created were characterised physico-chemically, electrically, and biologically. Raman spectroscopy demonstrated that the scaffold outer surface contained both PCL and G, with the G component relatively uniformly distributed. Water contact angle measurement demonstrated that as the amount of G in the scaffold increases (0.75-6% w/w), hydrophobicity decreases; mean contact angle for pure PCL was recorded as 107.22 ± 9.39°, and that with 6% G (PCL+6G) as 77.56 ± 6.75°. Electrochemical Impedance Spectroscopy demonstrated a marked increase in electroactivity potential with increasing G concentration. Cell viability results indicated that even the smallest addition of G (0.75%) resulted in a significant improvement in electroactivity potential and bioactivity compared with that for pure PCL, with 1.5 and 3% exhibiting the highest statistically significant increases in cell proliferation.

4.
ACS Appl Mater Interfaces ; 14(27): 31109-31120, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767835

ABSTRACT

Laser-induced graphene (LIG) on paper substrates is a desirable material for single-use point-of-care sensing with its high-quality electrical properties, low fabrication cost, and ease of disposal. While a prior study has shown how the repeated lasing of substrates enables the synthesis of high-quality porous graphitic films, however, the process-property correlation of lasing process on the surface microstructure and electrochemical behavior, including charge-transfer kinetics, is missing. The current study presents a systematic in-depth study on LIG synthesis to elucidate the complex relationship between the surface microstructure and the resulting electroanalytical properties. The observed improvements were then applied to develop high-quality LIG-based electrochemical biosensors for uric acid detection. We show that the optimal paper LIG produced via a dual pass (defocused followed by focused lasing) produces high-quality graphene in terms of crystallinity, sp2 content, and electrochemical surface area. The highest quality LIG electrodes achieved a high rate constant k0 of 1.5 × 10-2 cm s-1 and a significant reduction in charge-transfer resistance (818 Ω compared with 1320 Ω for a commercial glassy carbon electrode). By employing square wave anodic stripping voltammetry and chronoamperometry on a disposable two-electrode paper LIG-based device, the improved charge-transfer kinetics led to enhanced performance for sensing of uric acid with a sensitivity of 24.35 ± 1.55 µA µM-1 and a limit of detection of 41 nM. This study shows how high-quality, sensitive LIG electrodes can be integrated into electrochemical paper analytical devices.


Subject(s)
Biosensing Techniques , Graphite , Biosensing Techniques/methods , Electrochemical Techniques/methods , Graphite/chemistry , Lasers , Uric Acid
5.
Sci Rep ; 11(1): 10218, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33986311

ABSTRACT

This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 µm for operation across 0.19-0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm3. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.

6.
Micromachines (Basel) ; 12(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810006

ABSTRACT

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.

7.
Glob Chall ; 3(2): 1800066, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31565359

ABSTRACT

In recent years, metal oxide-based, inexpensive, stable electrodes are being explored as a potent source of high performance, sustainable supercapacitors. Here, the employment of industrial waste red mud as a pseudocapacitive electrode material is reported. Mechanical milling is used to produce uniform red mud nanoparticles, which are rich in hematite (Fe2O3), and lower amounts of other metal oxides. A comprehensive supercapacitive study of the electrode is presented as a function of ball-milling time up to 15 h. Ten-hour ball-milled samples exhibit the highest pseudocapacitive behavior with a specific capacitance value of ≈317 F g-1, at a scan rate of 10 mV s-1 in 6 m aqueous potassium hydroxide electrolyte solution. The modified electrode shows an extraordinary retention of ≈97% after 5000 cycles. A detailed quantitative electrochemical analysis is carried out to understand the charge storage mechanism at the electrode-electrolyte interface. The formation of uniform nanoparticles and increased electrode stability are correlated with the high performance. This work presents two significant benefits for the environment; in energy storage, it shows the production of a stable and efficient supercapacitor electrode, and in waste management with new applications for the treatment of red mud.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5657-5660, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947136

ABSTRACT

High-density electrodes with the nano feature size greatly enhance resolution and specificity during intracortical microstimulation. In this viewpoint, we fabricated and developed high-density nanowire (NW) electrodes, ~ 2.45×109 / cm2 that could directly stimulate specific region of the cortex with low current amplitude in the range of 120-180 µA. The proposed nanowire electrodes will help expand the capabilities of microstimulation and extend the range of dysfunctions that can be treated using microstimulation technique.


Subject(s)
Cerebral Cortex , Electric Stimulation , Nanowires , Electrodes , Humans , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...