Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 89(4): 637-652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831501

ABSTRACT

Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues. The developed protocol allows to generate high-quality Hi-C data and detect all types of chromosomal rearrangements. We have analyzed various databases to compile a comprehensive list of translocations that hold clinical importance for the targeted therapy selection. The practical value of molecular genetic testing is its ability to influence the treatment strategies and to provide prognostic insights. Detecting specific chromosomal rearrangements can guide the choice of the targeted therapies, which is a critical aspect of personalized medicine in oncology.


Subject(s)
Formaldehyde , Neoplasms , Paraffin Embedding , Humans , Neoplasms/genetics , Neoplasms/pathology , Formaldehyde/chemistry , Translocation, Genetic , Tissue Fixation , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry
2.
Biochemistry (Mosc) ; 89(4): 653-662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831502

ABSTRACT

Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.


Subject(s)
Plasmids , Plasmids/metabolism , Plasmids/genetics , DNA/chemistry , DNA/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry , Genome
3.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791500

ABSTRACT

Lymphedema is a disorder that leads to excessive swelling due to lymphatic insufficiency, resulting in the accumulation of protein-rich interstitial fluid. Primary lymphedema predominantly impacts the lower extremities and is frequently linked to hereditary factors. This condition is known to be associated with variants in several genes, such as FOXC2, FLT4, and SOX18. However, many cases remain unexplained, suggesting undiscovered gene associations. This study describes a novel mutation in the hepatocyte growth factor (HGF) gene, a previously hypothesized candidate for lymphedema pathogenesis. This mutation was identified in affected members of a multigenerational family presenting with primary leg lymphedema, consistent with an autosomal dominant inheritance pattern.


Subject(s)
Hepatocyte Growth Factor , Lymphedema , Mutation , Pedigree , Humans , Lymphedema/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Female , Male , Middle Aged , Adult
4.
Sci Rep ; 14(1): 5288, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438377

ABSTRACT

Structural variations are a pervasive feature of human genomes, and there is growing recognition of their role in disease development through their impact on spatial chromatin architecture. This understanding has led us to investigate the clinical significance of CNVs in noncoding regions that influence TAD structures. In this study, we focused on the Epb41l4a locus, which contains a highly conserved TAD boundary present in both human chromosome 5 and mouse chromosome 18, and its association with neurodevelopmental phenotypes. Analysis of human data from the DECIPHER database indicates that CNVs within this locus, including both deletions and duplications, are often observed alongside neurological abnormalities, such as dyslexia and intellectual disability, although there is not enough evidence of a direct correlation or causative relationship. To investigate these possible associations, we generated mouse models with deletion and inversion mutations at this locus and carried out RNA-seq analysis to elucidate gene expression changes. We found that modifications in the Epb41l4a TAD boundary led to dysregulation of the Nrep gene, which plays a crucial role in nervous system development. These findings underscore the potential pathogenicity of these CNVs and highlight the crucial role of spatial genome architecture in gene expression regulation.


Subject(s)
Chromatin , Chromosomes, Human, Pair 18 , Humans , Animals , Mice , Chromosomes, Human, Pair 5 , Databases, Factual , Disease Models, Animal
5.
Chromosome Res ; 32(2): 6, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504027

ABSTRACT

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Subject(s)
Chromosomes , DNA Copy Number Variations , Humans , Chromosome Inversion , Base Sequence , Germ Cells , Cytoskeletal Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
6.
Gigascience ; 122023 03 20.
Article in English | MEDLINE | ID: mdl-36971292

ABSTRACT

Interpretation of noncoding genomic variants is one of the most important challenges in human genetics. Machine learning methods have emerged recently as a powerful tool to solve this problem. State-of-the-art approaches allow prediction of transcriptional and epigenetic effects caused by noncoding mutations. However, these approaches require specific experimental data for training and cannot generalize across cell types where required features were not experimentally measured. We show here that available epigenetic characteristics of human cell types are extremely sparse, limiting those approaches that rely on specific epigenetic input. We propose a new neural network architecture, DeepCT, which can learn complex interconnections of epigenetic features and infer unmeasured data from any available input. Furthermore, we show that DeepCT can learn cell type-specific properties, build biologically meaningful vector representations of cell types, and utilize these representations to generate cell type-specific predictions of the effects of noncoding variations in the human genome.


Subject(s)
Deep Learning , Humans , Neural Networks, Computer , Machine Learning , Genome, Human
7.
Bioessays ; 45(5): e2200250, 2023 05.
Article in English | MEDLINE | ID: mdl-36855056

ABSTRACT

Extraordinary extended lampbrush chromosomes with thousands of transcription loops are favorable objects in chromosome biology. Chromosomes become lampbrushy due to unusually high rate of transcription during oogenesis. However, until recently, the information on the spectrum of transcribed sequences as well as genomic context of individual chromomeres was mainly limited to tandemly repetitive elements. Here we briefly outline novel findings and future directions in lampbrush chromosome studies in the post-genomic era. We emphasize the fruitfulness of combining genome-wide approaches with microscopy imaging techniques using lampbrush chromosomes as a remarkable model object. We believe that new data on the spectrum of sequences transcribed on the lateral loops of lampbrush chromosomes and their structural organization push the boundaries in the discussion of their biological role. Also see the video abstract here: https://youtu.be/zexoHfzX9rM.


Subject(s)
Chromosomes , Transcription, Genetic , Chromosomes/genetics , Genomics
8.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902449

ABSTRACT

Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops. Some loops formed by SMC proteins are highly cell type and developmental stage specific, such as SMC-mediated DNA loops required for VDJ recombination in B-cell progenitors, or dosage compensation in Caenorhabditis elegans and X-chromosome inactivation in mice. In this review, we focus on the extrusion-based mechanisms that are common for multiple cell types and species. We will first describe an anatomy of SMC complexes and their accessory proteins. Next, we provide biochemical details of the extrusion process. We follow this by the sections describing the role of SMC complexes in gene regulation, DNA repair, and chromatin topology.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Animals , Mice , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/metabolism , Chromatin , DNA/chemistry , Caenorhabditis elegans/metabolism
9.
Chromosome Res ; 31(1): 11, 2023 02 26.
Article in English | MEDLINE | ID: mdl-36842155

ABSTRACT

Alterations of human karyotype caused by chromosomal rearrangements are often associated with considerable phenotypic effects. Studying molecular mechanisms underlying these effects requires an efficient and scalable experimental model. Here, we propose a Cre-LoxP-based approach for the generation of combinatorial diversity of chromosomal rearrangements. We demonstrate that using the developed system, both intra- and inter-chromosomal rearrangements can be induced in the human haploid HAP1 cells, although the latter is significantly less effective. The obtained genetically modified HAP1 cell line can be used to dissect genomic effects associated with intra-chromosomal structural variations.


Subject(s)
Chromosomes , Gene Rearrangement , Recombination, Genetic , Humans , Chromosomes/genetics , Chromosomes/metabolism , Gene Rearrangement/genetics , Gene Rearrangement/physiology , Integrases/genetics , Integrases/metabolism , Recombination, Genetic/genetics , Recombination, Genetic/physiology , Cell Line
10.
Nucleic Acids Res ; 51(3): 1229-1244, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36651276

ABSTRACT

An increasing number of studies emphasize the role of non-coding variants in the development of hereditary diseases. However, the interpretation of such variants in clinical genetic testing still remains a critical challenge due to poor knowledge of their pathogenicity mechanisms. It was previously shown that variants in 5'-untranslated regions (5'UTRs) can lead to hereditary diseases due to disruption of upstream open reading frames (uORFs). Here, we performed a manual annotation of upstream translation initiation sites (TISs) in human disease-associated genes from the OMIM database and revealed ∼4.7 thousand of TISs related to uORFs. We compared our TISs with the previous studies and provided a list of 'high confidence' uORFs. Using a luciferase assay, we experimentally validated the translation of uORFs in the ETFDH, PAX9, MAST1, HTT, TTN,GLI2 and COL2A1 genes, as well as existence of N-terminal CDS extension in the ZIC2 gene. Besides, we created a tool to annotate the effects of genetic variants located in uORFs. We revealed the variants from the HGMD and ClinVar databases that disrupt uORFs and thereby could lead to Mendelian disorders. We also showed that the distribution of uORFs-affecting variants differs between pathogenic and population variants. Finally, drawing on manually curated data, we developed a machine-learning algorithm that allows us to predict the TISs in other human genes.


Subject(s)
5' Untranslated Regions , Databases, Genetic , Disease , Open Reading Frames , Humans , Protein Biosynthesis , Disease/genetics
11.
Res Sq ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168413

ABSTRACT

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis, and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, whole-genome sequencing (WGS), RNA-seq and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined WGS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints match the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2Mb region on chromosome 9 with a SINE element insertion at the more distal breakpoint. Interestingly, this hypothesized genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by RNA-seq on blood from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p segregating with a familial congenital clinical trait, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.

12.
Front Genet ; 13: 1059617, 2022.
Article in English | MEDLINE | ID: mdl-36468037

ABSTRACT

Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.

13.
Cells ; 11(22)2022 11 11.
Article in English | MEDLINE | ID: mdl-36429007

ABSTRACT

The problem of isolating high-quality total RNA from intervertebral discs has no recognized solution yet. This is due to the extremely low content of live cells in the samples and the voluminous intercellular matrix. A variety of published protocols focused on isolating RNA from articular cartilage have recommended the use of expensive equipment, enzymatic matrix cleavage, or cell culture. In our study, we used a combination of the traditional QIAzol protocol (Qiagen, Germany) and RNEasy column purification (Qiagen, Germany) to obtain high-quality RNA from post-surgical intervertebral disc fragments. Only a mortar and a pestle were used for grinding, making our method particularly accessible. The isolated RNA with a RIN of ~7 is suitable for studying the expression profile of chondrocytes in situ. RNA-seq analysis of three samples demonstrated cell type ratios to be mostly relevant to intervertebral disc tissues, with over 70% of the chondrocytes of the three subtypes having an admixture of blood-related cells.


Subject(s)
Cartilage, Articular , Intervertebral Disc , Humans , RNA-Seq , Cartilage, Articular/metabolism , Chondrocytes/metabolism , RNA/metabolism
15.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293454

ABSTRACT

DNA methylation is an essential epigenetic regulation mechanism implicated in transcription and replication control, developmental reprogramming, retroelements silencing and other genomic processes. During mammalian development, a specific DNA methylation pattern should be established in germ cells to allow embryonic development. Less is known about germ cell DNA methylation in other species. To close this gap, we performed a single-cell methylome analysis of chicken diplotene oocytes. We comprehensively characterized methylation patterns in these cells, obtained methylation-based chicken genome segmentation and identified oocyte-specific methylated gene promoters. Our data show that despite the formation of specific transcriptionally hyperactive genome architecture in chicken diplotene oocytes, methylation patterns in these cells closely resemble genomic distribution observed in somatic tissues.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Animals , Chickens/genetics , Retroelements/genetics , Oocytes/metabolism , Chromosomes/genetics , Mammals
16.
Nat Commun ; 13(1): 1960, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35413948

ABSTRACT

Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.


Subject(s)
Anopheles , Animals , Anopheles/genetics , Chromatin/genetics
17.
Cell Reprogram ; 23(6): 326-335, 2021 12.
Article in English | MEDLINE | ID: mdl-34788122

ABSTRACT

Induced pluripotent stem (iPS) cells have been produced just for a few species among order Carnivora: snow leopard, Bengal tiger, serval, jaguar, cat, dog, ferret, and American mink. We applied the iPS cell derivation protocol to the ringed seal (Phoca hispida) fibroblasts. The resulting cell line had the expression of pluripotency marker gene Rex1. Differentiation in embryoid body-like structures allowed us to register expression of AFP, endoderm marker, and Cdx2, trophectoderm marker, but not neuronal (ectoderm) markers. The cells readily differentiated into adipocytes and osteocytes, mesoderm cell types of origin. Transcriptome analysis allowed us to conclude that the cell line does not resemble human pluripotent cells, and, therefore, most probably is not pluripotent. Thus, we produced ringed seal multipotent stem cell line capable of differentiation into adipocytes and osteocytes.


Subject(s)
Induced Pluripotent Stem Cells , Phoca , Animals , Cell Differentiation , Cell Line , Dogs , Ferrets , Multipotent Stem Cells
18.
Cytogenet Genome Res ; 161(3-4): 105-119, 2021.
Article in English | MEDLINE | ID: mdl-33849037

ABSTRACT

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , DNA Methylation , Developmental Disabilities/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Child, Preschool , CpG Islands/genetics , Family Health , Female , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Maternal Inheritance/genetics
19.
Epigenetics Chromatin ; 14(1): 15, 2021 03 20.
Article in English | MEDLINE | ID: mdl-33743768

ABSTRACT

BACKGROUND: The Hi-C technique is widely employed to study the 3-dimensional chromatin architecture and to assemble genomes. The conventional in situ Hi-C protocol employs restriction enzymes to digest chromatin, which results in nonuniform genomic coverage. Using sequence-agnostic restriction enzymes, such as DNAse I, could help to overcome this limitation. RESULTS: In this study, we compare different DNAse Hi-C protocols and identify the critical steps that significantly affect the efficiency of the protocol. In particular, we show that the SDS quenching strategy strongly affects subsequent chromatin digestion. The presence of biotinylated oligonucleotide adapters may lead to ligase reaction by-products, which can be avoided by rational design of the adapter sequences. Moreover, the use of nucleotide-exchange enzymes for biotin fill-in enables simultaneous labelling and repair of DNA ends, similar to the conventional Hi-C protocol. These improvements simplify the protocol, making it less expensive and time-consuming. CONCLUSIONS: We propose a new robust protocol for the preparation of DNAse Hi-C libraries from cultured human cells and blood samples supplemented with experimental controls and computational tools for the evaluation of library quality.


Subject(s)
Chromatin , Deoxyribonucleases , Chromosomes , Deoxyribonuclease I , Genome , Humans
20.
Sci Rep ; 11(1): 4414, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627746

ABSTRACT

Generation of mature red blood cells, consisting mainly of hemoglobin, is a remarkable example of coordinated action of various signaling networks. Chromatin condensation is an essential step for terminal erythroid differentiation and subsequent nuclear expulsion in mammals. Here, we profiled 3D genome organization in the blood cells from ten species belonging to different vertebrate classes. Our analysis of contact maps revealed a striking absence of such 3D interaction patterns as loops or TADs in blood cells of all analyzed representatives. We also detect large-scale chromatin rearrangements in blood cells from mammals, birds, reptiles and amphibians: their contact maps display strong second diagonal pattern, representing an increased frequency of long-range contacts, unrelated to TADs or compartments. This pattern is completely atypical for interphase chromosome structure. We confirm that these principles of genome organization are conservative in vertebrate erythroid cells.


Subject(s)
Erythrocytes/physiology , Genome/genetics , Vertebrates/genetics , Amphibians/genetics , Animals , Birds/genetics , Cell Nucleus/genetics , Chromatin/genetics , Erythroid Cells/cytology , Interphase/genetics , Mammals/genetics , Mice , Mice, Inbred C57BL , Reptiles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...