Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(27): 23164-23174, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28603968

ABSTRACT

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS2 to a broader distribution (from 0.2 to 0.8 eV) after 600 s O2 plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS2 multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS2 FETs, fabricated by self-aligned deposition of source/drain contacts in the O2 plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio Ion/Ioff ≈ 103 and field-effect mobilities of 11.5 and 7.2 cm2 V-1 s-1 for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O2 plasma functionalized MoS2 surface.

2.
Beilstein J Nanotechnol ; 8: 183-189, 2017.
Article in English | MEDLINE | ID: mdl-28243555

ABSTRACT

The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

3.
Beilstein J Nanotechnol ; 8: 254-263, 2017.
Article in English | MEDLINE | ID: mdl-28243564

ABSTRACT

Molybdenum disulphide (MoS2) is currently regarded as a promising material for the next generation of electronic and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET) applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the main limiting factors for suitable device performance. Furthermore, to gain a deeper understanding of MoS2 FETs under practical operating conditions, it is necessary to investigate the temperature dependence of the main electrical parameters, such as the field effect mobility (µ) and the threshold voltage (Vth). This paper reports a detailed electrical characterization of back-gated multilayer MoS2 transistors with Ni source/drain contacts at temperatures from T = 298 to 373 K, i.e., the expected range for transistor operation in circuits/systems, considering heating effects due to inefficient power dissipation. From the analysis of the transfer characteristics (ID-VG) in the subthreshold regime, the Schottky barrier height (ΦB ≈ 0.18 eV) associated with the Ni/MoS2 contact was evaluated. The resulting contact resistance in the on-state (electron accumulation in the channel) was also determined and it was found to increase with T as RC proportional to T3.1. The contribution of RC to the extraction of µ and Vth was evaluated, showing a more than 10% underestimation of µ when the effect of RC is neglected, whereas the effect on Vth is less significant. The temperature dependence of µ and Vth was also investigated. A decrease of µ proportional to 1/Tα with α = 1.4 ± 0.3 was found, indicating scattering by optical phonons as the main limiting mechanism for mobility above room temperature. The value of Vth showed a large negative shift (about 6 V) increasing the temperature from 298 to 373 K, which was explained in terms of electron trapping at MoS2/SiO2 interface states.

4.
Beilstein J Nanotechnol ; 8: 418-424, 2017.
Article in English | MEDLINE | ID: mdl-28326231

ABSTRACT

The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect attributable to a p-type doping through oxygen. The thermal broadening of the line shape, found during thermal treatments by in situ Raman measurements, can be related to thermal phonon effects. The absence of a band shift results from the balance between a red shift due to thermal effects and a blue shift induced by doping. This shows the potential of in situ measurements to follow the doping kinetics. The treatment of MoS2 in O2 has evidenced a progressive erosion of the flakes without relevant spectral changes in their central zone during in situ measurements. The formation of MoO3 on the edges of the flakes is observed indicative of the oxygen-activated transformation.

5.
Beilstein J Nanotechnol ; 8: 467-474, 2017.
Article in English | MEDLINE | ID: mdl-28326237

ABSTRACT

Graphene is an ideal candidate for next generation applications as a transparent electrode for electronics on plastic due to its flexibility and the conservation of electrical properties upon deformation. More importantly, its field-effect tunable carrier density, high mobility and saturation velocity make it an appealing choice as a channel material for field-effect transistors (FETs) for several potential applications. As an example, properly designed and scaled graphene FETs (Gr-FETs) can be used for flexible high frequency (RF) electronics or for high sensitivity chemical sensors. Miniaturized and flexible Gr-FET sensors would be highly advantageous for current sensors technology for in vivo and in situ applications. In this paper, we report a wafer-scale processing strategy to fabricate arrays of back-gated Gr-FETs on poly(ethylene naphthalate) (PEN) substrates. These devices present a large-area graphene channel fully exposed to the external environment, in order to be suitable for sensing applications, and the channel conductivity is efficiently modulated by a buried gate contact under a thin Al2O3 insulating film. In order to be compatible with the use of the PEN substrate, optimized deposition conditions of the Al2O3 film by plasma-enhanced atomic layer deposition (PE-ALD) at a low temperature (100 °C) have been developed without any relevant degradation of the final dielectric performance.

6.
ACS Appl Mater Interfaces ; 9(8): 7761-7771, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28135063

ABSTRACT

High-quality thin insulating films on graphene (Gr) are essential for field-effect transistors (FETs) and other electronics applications of this material. Atomic layer deposition (ALD) is the method of choice to deposit high-κ dielectrics with excellent thickness uniformity and conformal coverage. However, to start the growth on the sp2 Gr surface, a chemical prefunctionalization or the physical deposition of a seed layer are required, which can effect, to some extent, the electrical properties of Gr. In this paper, we report a detailed morphological, structural, and electrical investigation of Al2O3 thin films grown by a two-steps ALD process on a large area Gr membrane residing on an Al2O3-Si substrate. This process consists of the H2O-activated deposition of a Al2O3 seed layer a few nanometers in thickness, performed in situ at 100 °C, followed by ALD thermal growth of Al2O3 at 250 °C. The optimization of the low-temperature seed layer allowed us to obtain a uniform, conformal, and pinhole-free Al2O3 film on Gr by the second ALD step. Nanoscale-resolution mapping of the current through the dielectric by conductive atomic force microscopy (CAFM) demonstrated an excellent laterally uniformity of the film. Raman spectroscopy measurements indicated that the ALD process does not introduce defects in Gr, whereas it produces a partial compensation of Gr unintentional p-type doping, as confirmed by the increase of Gr sheet resistance (from ∼300 Ω/sq in pristine Gr to ∼1100 Ω/sq after Al2O3 deposition). Analysis of the transfer characteristics of Gr field-effect transistors (GFETs) allowed us to evaluate the relative dielectric permittivity (ε = 7.45) and the breakdown electric field (EBD = 7.4 MV/cm) of the Al2O3 film as well as the transconductance and the holes field-effect mobility (∼1200 cm2 V-1 s-1). A special focus has been given to the electrical characterization of the Al2O3-Gr interface by the analysis of high frequency capacitance-voltage measurements, which allowed us to elucidate the charge trapping and detrapping phenomena due to near-interface and interface oxide traps.

7.
Nanoscale ; 6(15): 8671-80, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24946753

ABSTRACT

Vertical heterostructures combining two or more graphene (Gr) layers separated by ultra-thin insulating or semiconductor barriers represent very promising systems for next generation electronics devices, due to the combination of high speed operation with wide-range current modulation by a gate bias. They are based on the specific mechanisms of current transport between two-dimensional-electron-gases (2DEGs) in close proximity. In this context, vertical devices formed by Gr and semiconductor heterostructures hosting an "ordinary" 2DEG can be also very interesting. In this work, we investigated the vertical current transport in Gr/Al(0.25)Ga(0.75)N/GaN heterostructures, where Gr is separated from a high density 2DEG by a ∼ 24 nm thick AlGaN barrier layer. The current transport from Gr to the buried 2DEG was characterized at nanoscale using conductive atomic force microscopy (CAFM) and scanning capacitance microscopy (SCM). From these analyses, performed both on Gr/AlGaN/GaN and on AlGaN/GaN reference samples using AFM tips with different metal coatings, the Gr/AlGaN Schottky barrier height ΦB and its lateral uniformity were evaluated, as well as the variation of the carrier densities of graphene (ngr) and AlGaN/GaN 2DEG (ns) as a function of the applied bias. A low Schottky barrier (∼ 0.40 eV) with excellent spatial uniformity was found at the Gr/AlGaN interface, i.e., lower compared to the measured values for metal/AlGaN contacts, which range from ∼ 0.6 to ∼ 1.1 eV depending on the metal workfunction. The electrical behavior of the Gr/AlGaN contact has been explained by Gr interaction with AlGaN donor-like surface states located in close proximity, which are also responsible of high n-type Gr doping (∼ 1.3 × 10(13) cm(-2)). An effective modulation of ns by the Gr Schottky contact was demonstrated by capacitance analysis under reverse bias. From this basic understanding of transport properties in Gr/AlGaN/GaN heterostructures, novel vertical field effect transistor concepts with high operating speed and I(on)/I(off) ratio can be envisaged.

8.
Beilstein J Nanotechnol ; 4: 234-42, 2013.
Article in English | MEDLINE | ID: mdl-23616943

ABSTRACT

Chemical vapour deposition (CVD) on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate), briefly PEN), suitable for microelectronics and flexible electronics applications, respectively. The electrical properties (sheet resistance, mobility, carrier density) of the transferred graphene as well as the specific contact resistance of metal contacts onto graphene were investigated by using properly designed test patterns. While a sheet resistance R sh ≈ 1.7 kΩ/sq and a specific contact resistance ρc ≈ 15 kΩ·µm have been measured for graphene transferred onto SiO2, about 2.3× higher R sh and about 8× higher ρc values were obtained for graphene on PEN. High-resolution current mapping by torsion resonant conductive atomic force microscopy (TRCAFM) provided an insight into the nanoscale mechanisms responsible for the very high ρc in the case of graphene on PEN, showing a ca. 10× smaller "effective" area for current injection than in the case of graphene on SiO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...