Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 405(6787): 673-6, 2000 Jun 08.
Article in English | MEDLINE | ID: mdl-10864321

ABSTRACT

When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts. The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected. Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51 degrees N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.

2.
Science ; 281(5379): 978-80, 1998 Aug 14.
Article in English | MEDLINE | ID: mdl-9703510

ABSTRACT

The subsurface biosphere may constitute as much as 50 percent of Earth's biomass. Direct and indirect evidence suggests that an extensive biosphere exists in the rocks below the sea floor. This survey of basalts of the Atlantic, Pacific, and Indian Oceans supports the hypothesis that bacteria have colonized much of the upper oceanic crust, which has a volume estimated at 10(18) cubic meters. Although this is the largest habitat on Earth, its low abundance of bacteria constitutes much less than 1 percent of Earth's biomass.

SELECTION OF CITATIONS
SEARCH DETAIL
...