Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(7): e11557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983707

ABSTRACT

Golden-winged Warblers (Vermivora chrysoptera) have become rare across much of their historic breeding range and response to conservation efforts is variable. Evidence from several recent studies suggests that breeding output is a primary driver explaining responses to conservation and it is hypothesized that differences in food availability may be driving breeding output disparity between two subpopulations of the warbler's Appalachian breeding range. Herein, we studied two subpopulations: central Pennsylvania ("central subpopulation"), where breeding productivity is relatively low, and eastern Pennsylvania ("eastern subpopulation"), where breeding productivity is relatively high. To test the food-availability hypothesis in this system, we measured density of caterpillars, plasma lipid metabolites (triglycerides [TRIG; fat deposition] and glycerol [GLYC; fat breakdown]), body mass of adults males, and acquired body mass data for fledglings at 38 sites managed for nesting habitat. Consistent with our prediction, leaf-roller caterpillar density, the group upon which Golden-winged Warblers specialize, was 45× lower in the central subpopulation than the eastern subpopulation. TRIG concentrations were highest within the eastern subpopulation during breeding grounds arrival. The change in TRIG concentrations from the breeding-grounds-arrival stage to the nestling-rearing stage was subpopulation dependent: TRIG decreased in the eastern subpopulation and was constant in the central subpopulation, resulting in similar concentrations during the nestling-rearing stage. Furthermore, GLYC concentrations were higher in the eastern subpopulation, which suggests greater energy demands in this region. Despite this, adult male warblers in the eastern subpopulation maintained a higher average body mass. Finally, fledgling body mass was 16% greater in the eastern subpopulation than the central subpopulation before and after fledging. Collectively, our results suggest that poor breeding success of Golden-winged Warblers in the central subpopulation could be driven by lower availability of primary prey during the breeding season (leaf-roller caterpillars), and this, in turn, limits their response to conservation efforts.

2.
J Environ Manage ; 366: 121786, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991338

ABSTRACT

Conservationists spend considerable resources to create and enhance wildlife habitat. Monitoring how species respond to these efforts helps managers allocate limited resources. However, monitoring efforts often encounter logistical challenges that are exacerbated as geographic extent increases. We used autonomous recording units (ARUs) and automated acoustic classification to mitigate the challenges of assessing Eastern Whip-poor-will (Antrostomus vociferus) response to forest management across the eastern USA. We deployed 1263 ARUs in forests with varying degrees of management intensity. Recordings were processed using an automated classifier and the resulting detection data were used to assess occupancy. Whip-poor-wills were detected at 401 survey locations. Across our study region, whip-poor-will occupancy decreased with latitude and elevation. At the landscape scale, occupancy decreased with the amount of impervious cover, increased with herbaceous cover and oak and evergreen forests, and exhibited a quadratic relationship with the amount of shrub-scrub cover. At the site-level, occupancy was negatively associated with basal area and brambles (Rubus spp.) and exhibited a quadratic relationship with woody stem density. Implementation of practices that create and sustain a mosaic of forest age classes and a diverse range of canopy closure within oak (Quercus spp.) dominated landscapes will have the highest probability of hosting whip-poor-wills. The use of ARUs and a machine learning classifier helped overcome challenges associated with monitoring a nocturnal species with a short survey window across a large spatial extent. Future monitoring efforts that combine ARU-based protocols and mappable fine-resolution structural vegetation data would likely further advance our understanding of whip-poor-will response to forest management.

3.
Ecol Evol ; 14(5): e11327, 2024 May.
Article in English | MEDLINE | ID: mdl-38774142

ABSTRACT

Identifying factors that drive variation in vital rates among populations is a prerequisite to understanding a species' population biology and, ultimately, to developing effective conservation strategies. This is especially true for imperiled species like the golden-winged warbler (Vermivora chrysoptera) that exhibit strong spatial heterogeneity in demography and responds variably to conservation interventions. Habitat management actions recommended for breeding grounds conservation include timber harvest, shrub shearing, and prescribed fire that maintain or create early successional woody communities. Herein, we assessed variation in the survival of nests [n = 145] and fledglings [n = 134] at 17 regenerating timber harvest sites within two isolated populations in Pennsylvania that differed in productivity and response to habitat management. Although the overall survival of nests and fledglings was higher in the eastern population than the central population, this was only true when the nest phases and fledgling phases were considered wholly. Indeed, survival rates of nestlings and recently fledged young (1-5 days post-fledging) were lower in the central population, whereas eggs and older fledglings (6-30 days post-fledging) survived at comparable rates in both populations. Fledglings in the central population were smaller (10% lower weight) and begged twice as much as those in the eastern population, suggesting food limitation may contribute to lower survival rates. Fledgling survival in the central population, but not the eastern, also was a function of habitat features (understory vegetation density [positive] and distance to mature forest [negative]) and individual factors (begging effort [negative]). Our findings illustrate how identifying how survival varies across specific life stages can elucidate potential underlying demographic drivers, such as food resources in this case. In this way, our work underscores the importance of studying and decomposing stage-specific demography in species of conservation concern.

4.
Mol Ecol ; 33(1): e17199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018020

ABSTRACT

Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene-environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.


Subject(s)
Conservation of Natural Resources , Passeriformes , Animals , Endangered Species , Genomics , Biological Evolution , Climate Change
5.
Proc Natl Acad Sci U S A ; 117(48): 30539-30546, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199602

ABSTRACT

Parent-offspring conflict has explained a variety of ecological phenomena across animal taxa, but its role in mediating when songbirds fledge remains controversial. Specifically, ecologists have long debated the influence of songbird parents on the age of fledging: Do parents manipulate offspring into fledging to optimize their own fitness or do offspring choose when to leave? To provide greater insight into parent-offspring conflict over fledging age in songbirds, we compared nesting and postfledging survival rates across 18 species from eight studies in the continental United States. For 12 species (67%), we found that fledging transitions offspring from comparatively safe nesting environments to more dangerous postfledging ones, resulting in a postfledging bottleneck. This raises an important question: as past research shows that offspring would benefit-improve postfledging survival-by staying in the nest longer: Why then do they fledge so early? Our findings suggest that parents manipulate offspring into fledging early for their own benefit, but at the cost of survival for each individual offspring, reflecting parent-offspring conflict. Early fledging incurred, on average, a 13.6% postfledging survival cost for each individual offspring, but parents benefitted through a 14.0% increase in the likelihood of raising at least one offspring to independence. These parental benefits were uneven across species-driven by an interaction between nest mortality risk and brood size-and predicted the age of fledging among species. Collectively, our results suggest that parent-offspring conflict and associated parental benefits explain variation in fledging age among songbird species and why postfledging bottlenecks occur.


Subject(s)
Behavior, Animal , Songbirds , Animals , Nesting Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...