Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 52(3): 263-72, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11180619

ABSTRACT

In order to examine connexin transport, assembly, and turnover in living cells, we tagged green fluorescent protein or its color variants to several members of the connexin family of proteins. When green fluorescent protein was tagged to the carboxyl terminal end of connexin43 (Cx43-GFP), the resulting fusion protein was transported and assembled into functional gap junctions. However, when GFP was tagged to the amino terminal end of Cx43 (GFP-Cx43), this chimera was biosynthesized, transported to the plasma membrane, but failed to form gap junction channels that could transfer Lucifer yellow. Single cells that expressed Cx43-GFP were capable of transporting this fusion protein to the cell surface in the absence of cell-cell contact. Imaging of Cx43-yellow (Y)FP (Cx43-YFP) was quite efficient; however, the low quantum yield Cx43-BFP and the requirement for ultraviolet excitation made this chimera less suitable for time-lapse imaging. Cx43-cyan C(FP) (Cx43-CFP) was more suitable for imaging than Cx43-blue (B)FP and could be effectively separated from Cx43-YFP. The versatility of tagging GFP to the carboxyl terminal end of other members of the connexin family was established when Cx32-GFP and Cx26-YFP were found to assemble into gap junctions capable of transferring Lucifer yellow. Finally, we are examining the effectiveness of using a new red fluorescent protein (DsRed) fused to connexins in combination with Cx-GFP to simultaneously examine the kinetics, transport and turnover of two connexins. Together, our studies suggest that tagging fluorescent proteins to the carboxyl terminal end of connexins is an effective and valuable approach for studying the life cycle and dynamics of connexins in living cells.


Subject(s)
Connexins/metabolism , Gap Junctions/metabolism , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Cell Line , Connexin 26 , Connexins/chemistry , Connexins/genetics , Dogs , Humans , Immunohistochemistry , Luminescent Proteins/genetics , Microscopy, Confocal/instrumentation , Rats , Recombinant Fusion Proteins/genetics , Retroviridae/genetics , Transfection
2.
Cancer Res ; 59(16): 4104-10, 1999 Aug 15.
Article in English | MEDLINE | ID: mdl-10463615

ABSTRACT

Gap junctions are intercellular channels that are formed from members of a family of proteins, the connexins (Cxs). Gap junctions play an important role in vital functions, including the regulation of cell growth and cell differentiation. Here, we examined the expression of Cx43, a major Cx in breast tissue, in 32 surgical specimens obtained from breast cancer patients who underwent a primary surgical resection prior to chemotherapy or radiotherapy treatments. The expression of Cx43 gap junctions was compared to the levels of estrogen, progesterone, and erbB2 tyrosine kinase receptors. In addition, a panel of breast cancer cell lines and a series of normal rat mammary tissues and rat mammary tumors induced in vivo by dimethylbenz(a)anthracene were studied. We demonstrated that the lack of Cx43 gap junctions is a common feature of human mammary cancer tissues compared to nonneoplastic breast tissues surrounding primary tumors. Cx43 gap junctions were not observed in ductal carcinomas in situ, infiltrating ductal carcinomas, and infiltrating lobular carcinomas, and they seem to be independent of estrogen, progesterone, and erbB2 receptor status. In breast cancer cell lines and rodent mammary carcinoma tissues, down-regulation of Cx43 occurs at the mRNA level, suggesting a transcriptional mechanism for the decrease of Cx43 protein in breast cancer. In summary, this study provides evidence of decreased expression of Cx43 gap junctions in breast cancer at various stages of progression as well as breast cancer cell lines and raises the possibility that Cx43 may be a useful marker for detecting early oncogenesis in the breast. Because Cx43 gap junctions are lacking in breast cancer and restoration of Cx43 has been shown to reverse the malignant phenotype in vitro, pharmacological up-regulation of Cx43 may prove beneficial in cancer therapeutics.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/metabolism , Connexin 43/deficiency , Mammary Neoplasms, Animal/metabolism , Adult , Aged , Aged, 80 and over , Animals , Breast Neoplasms/pathology , Down-Regulation , Female , Humans , Immunohistochemistry , Mammary Neoplasms, Animal/pathology , Middle Aged , Rats , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...