Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(36): 25529-25551, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37636499

ABSTRACT

The promising green synthesis of carbon dots (CDs) from microalga Chlorella pyrenoidosa was achieved using simple hydrothermal and microwave-assisted methods. Doping of nanomaterials by nonmetals (N, S, and P) was confirmed by X-ray photoelectron spectroscopy (XPS), while the existence of metals in the CDs was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM), and Mg, Ca, K, and Na were found as the dominant doped metals. The novel nanomaterials with excellent photoluminescence (PL) properties were used for the modification of ZnO obtained by a simple hydrothermal process. In this regard, a series of ZnO decorated with multi-doped carbon dots (xCDs) was prepared and their photocatalytic properties were evaluated. The ZnO-xCD photocatalysts were characterized by various advanced techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), XPS, Brunauer-Emmett-Teller (BET), PL, ultraviolet-visible (UV-vis) spectroscopy and electrochemical impedance spectroscopy (EIS) analysis. The photocatalytic behaviour of the obtained materials was investigated in the degradation of carbamazepine (CBZ). The influence of the synthesis method of xCDs and their content on the activity of the photocatalyst was examined. The photocatalyst ZnO modified with 3% xCDs obtained by the microwave-assisted method revealed the highest effectiveness for CBZ degradation and allowed for a first-order degradation rate of 2.85 times in comparison with non-modified ZnO. The improvement of the photocatalytic process was achieved by support with peroxymonosulphate resulting in up to 3.18 times a first order kinetic rate constant compared with that of simple photocatalysis in the presence of ZnO-xCDs. Taken together, our synthesized multi-doped CDs and their nanohybrids with ZnO, can be considered as promising candidates for photocatalytic applications.

2.
Materials (Basel) ; 15(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057350

ABSTRACT

Due to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized using a facile method to remove NOx in air efficiently. The photocatalytic tests performed in a newly designed continuous-flow photoreactor with an LED array and online monitored NO2 and NO system allowed the investigation of photocatalyst layers at the pilot scale. The WO3/S-doped-g-C3N4 nanocomposite, as well as single components, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis (BET), X-ray fluorescence spectroscopy (XRF), X-ray photoemission spectroscopy method (XPS), UV-vis diffuse reflectance spectroscopy (DR/UV-vis), and photoluminescence spectroscopy with charge carriers' lifetime measurements. All materials exhibited high efficiency in photocatalytic NO2 conversion, and 100% was reached in less than 5 min of illumination under simulated solar light. The effect of process parameters in the experimental setup together with WO3/S-doped g-C3N4 photocatalysts was studied in detail. Finally, the stability of the composite was tested in five subsequent cycles of photocatalytic degradation. The WO3/S-doped g-C3N4 was stable in time and did not undergo deactivation due to the blocking of active sites on the photocatalyst's surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...