Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Evolution ; 78(6): 1054-1066, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38441178

ABSTRACT

Bird song is a classic example of a sexually selected trait, but much of the work relating individual song components to fitness has not accounted for song typically being composed of multiple, often-correlated components, necessitating a multivariate approach. We explored the role of sexual selection in shaping the complex male song of house wrens (Troglodytes aedon) by simultaneously relating its multiple components to fitness using multivariate selection analysis, which is widely used in insect and anuran studies but not in birds. The analysis revealed significant variation in the form and strength of selection acting on song across different selection episodes, from nest-site defense to recruitment of offspring to the breeding population. Males that sang more song typically employed in close communication sired more offspring that were subsequently recruited to the breeding population than those that sang more far-communication song. However, this relationship was not consistent across earlier selection episodes, as evidenced by non-linear selection acting on these song components in other contexts. Collectively, our results present a complex picture of multivariate selection on male song structure that would not be evident using univariate approaches and suggest possible trade-offs within and among song components at different points of the breeding season.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Male , Songbirds/physiology , Songbirds/genetics , Selection, Genetic , Animal Migration , Female , Sexual Selection
2.
Data Brief ; 53: 110073, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317726

ABSTRACT

Magnetotactic bacteria (MTB) are diverse prokaryotes characterized by their ability to generate biogenic magnetic iron crystals. MTB are ubiquitous across aquatic environments, and growing evidence has indicated they may be present in association with animal microbiomes. Unfortunately, they are difficult to culture in vitro and more studies understanding their biogeographical distribution and ecological roles are needed. To provide data regarding the patterns of diversity and distribution of MTB, we screened the entire Sequence Read Archive (SRA) from the National Center for Biotechnology Information for DNA sequencing reads matching known MTB taxa. The dataset summarizes the count of reads assigned to MTB from more than 26 million SRA accessions comprising approximately 80 petabases (7.98 × 1016) of DNA. More than 396 million DNA sequencing reads were assigned to 214 MTB taxa in 691,086 (2.65 %) SRA accessions. The final dataset can be utilized by researchers to narrow their efforts in examination of both environmental and ecological roles of specific MTB or to identify potential host organisms. These data will be instrumental to further elucidating the importance and utility of these enigmatic bacteria.

3.
Mitochondrial DNA B Resour ; 8(7): 756-759, 2023.
Article in English | MEDLINE | ID: mdl-37475776

ABSTRACT

In this study we sequenced and annotated the complete mitochondrial genome of the invasive reptile parasite Raillietiella orientalis using Illumina DNA sequencing. The length of the mitogenome was 15,320 bp and had a GC content of 33.1%. The mitogenome contained 13 protein-coding genes, two ribosomal RNA genes, and 22 tRNA genes, the order of which was diagnostic of Pancrustacean mitogenomes. A phylogenetic tree constructed from the 13 protein-coding genes of R. orientalis and 26 other Pancrustacean mitogenomes supported the placement of R. orientalis as part of the monophyletic subclass Pentastomida within the Maxillopoda and sister to the subclass Branchiura.

4.
Microbiol Resour Announc ; 12(7): e0009323, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37358454

ABSTRACT

Ophidiomyces ophidiicola is a globally distributed fungal pathogen of snakes. This study reports genome assemblies for three novel isolates that were derived from hosts originating in the United States, Germany, and Canada. The assemblies have a mean length of 21.4 Mbp, with coverage of 116.7×, and will contribute to wildlife disease research.

5.
Animals (Basel) ; 12(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36552427

ABSTRACT

New Zealand has the fourth largest feral horse population in the world. The Kaimanawas (KHs) are feral horses descended from various domestic horse breeds released into the Kaimanawa ranges in the 19th and 20th centuries. Over time, the population size has fluctuated dramatically due to hunting, large-scale farming and forestry. Currently, the herd is managed by an annual round-up, limiting the number to 300 individuals to protect the native ecosystem. Here, we genotyped 96 KHs for uniparental markers (mitochondrial DNA, Y-chromosome) and assessed their genetic similarity with respect to other domestic horses. We show that at least six maternal and six paternal lineages contributed unequally to the KH gene pool, and today's KH population possibly represents two sub-populations. Our results indicate that three horse breeds, namely Welsh ponies, Thoroughbreds and Arabian horses had a major influence in the genetic-makeup of the extant KH population. We show that mitochondrial genetic diversity in KHs (π = 0.00687 ± 0.00355) is closer to that of the Sable Island horses (π = 0.0034 ± 0.00301), and less than other feral horse populations around the world. Our current findings, combined with ongoing genomic research, will provide insight into the population-specific genetic variation and inbreeding among KHs. This will largely advance equine research and improve the management of future breeding programs of these treasured New Zealand horse.

6.
J Hered ; 113(5): 491-499, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35930593

ABSTRACT

Genetic admixture is a biological event inherent to genetic rescue programs aimed at the long-term conservation of endangered wildlife. Although the success of such programs can be measured by the increase in genetic diversity and fitness of subsequent admixed individuals, predictions supporting admixture costs to fitness due to the introduction of novel deleterious alleles are necessary. Here, we analyzed nonsynonymous variation from conserved genes to quantify and compare levels of mutation load (i.e. proportion of deleterious alleles and genotypes carrying these alleles) among endangered Florida panthers and non-endangered Texas pumas. Specifically, we used canonical (i.e. non-admixed) Florida panthers, Texas pumas, and F1 (canonical Florida × Texas) panthers dating from a genetic rescue program and Everglades National Park panthers with Central American ancestry resulting from an earlier admixture event. We found neither genetic drift nor selection significantly reduced overall proportions of deleterious alleles in the severely bottlenecked canonical Florida panthers. Nevertheless, the deleterious alleles identified were distributed into a disproportionately high number of homozygous genotypes due to close inbreeding in this group. Conversely, admixed Florida panthers (either with Texas or Central American ancestry) presented reduced levels of homozygous genotypes carrying deleterious alleles but increased levels of heterozygous genotypes carrying these variants relative to canonical Florida panthers. Although admixture is likely to alleviate the load of standing deleterious variation present in homozygous genotypes, our results suggest that introduced novel deleterious alleles (temporarily present in heterozygous state) in genetically rescued populations could potentially be expressed in subsequent generations if their effective sizes remain small.


Subject(s)
Puma , Humans , Animals , Puma/genetics , Inbreeding , Animals, Wild , Heterozygote , Mutation , Genetic Variation
7.
Biol Methods Protoc ; 6(1): bpab017, 2021.
Article in English | MEDLINE | ID: mdl-34595352

ABSTRACT

The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.

9.
Philos Trans R Soc Lond B Biol Sci ; 375(1808): 20190595, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32772668

ABSTRACT

The identity of a magnetic sensor in animals remains enigmatic. Although the use of the geomagnetic field for orientation and navigation in animals across a broad taxonomic range has been well established over the past five decades, the identity of the magnetic-sensing organ and its structure and/or apparatus within such animals remains elusive-'a sense without a receptor'. Recently, we proposed that symbiotic magnetotactic bacteria (MTB) may serve as the underlying mechanism behind a magnetic sense in animals-'the symbiotic magnetic-sensing hypothesis'. Since we first presented this hypothesis, both criticism and support have been raised accordingly. Here we address the primary criticisms and discuss the plausibility of such a symbiosis, supported by preliminary findings demonstrating the ubiquity of MTB DNA in general, and specifically in animal samples. We also refer to new supporting findings, and discuss host adaptations that could be driven by such a symbiosis. Finally, we suggest the future research directions required to confirm or refute the possibility of symbiotic magnetic-sensing. This article is part of the theme issue 'The role of the microbiome in host evolution'.


Subject(s)
Bacterial Physiological Phenomena , Magnetic Phenomena , Sensation , Symbiosis , Animals
10.
Proc Natl Acad Sci U S A ; 117(31): 18574-18581, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32661155

ABSTRACT

Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.


Subject(s)
Anura/physiology , Biliverdine/metabolism , Serpins/metabolism , Skin Pigmentation/physiology , Animals , Anura/classification , Anura/genetics , Biliverdine/chemistry , Biological Mimicry/physiology , Serpins/chemistry , Serpins/genetics , Skin Pigmentation/genetics
11.
Article in English | MEDLINE | ID: mdl-32607762

ABSTRACT

Diverse animals use Earth's magnetic field to guide their movements, but the neural and molecular mechanisms underlying the magnetic sense remain enigmatic. One hypothesis is that particles of the mineral magnetite (Fe3O4) provide the basis of magnetoreception. Here we examined gene expression in the central nervous system of a magnetically sensitive invertebrate, the Caribbean spiny lobster (Panulirus argus), after applying a magnetic pulse known to alter magnetic orientation behavior. Numerous genes were differentially expressed in response to the pulse, including 647 in the brain, 1256 in the subesophageal ganglion, and 712 in the thoracic ganglia. Many such genes encode proteins linked to iron regulation, oxidative stress, and immune response, consistent with possible impacts of a magnetic pulse on magnetite-based magnetoreceptors. Additionally, however, altered expression also occurred for numerous genes with no apparent link to magnetoreception, including genes encoding proteins linked to photoreception, carbohydrate and hormone metabolism, and other physiological processes. Overall, the results are consistent with the magnetite hypothesis of magnetoreception, yet also reveal that in spiny lobsters, a strong pulse altered expression of > 10% of all expressed genes, including many seemingly unrelated to sensory processes. Thus, caution is required when interpreting the effects of magnetic pulses on animal behavior.


Subject(s)
Palinuridae/radiation effects , Animals , Behavior, Animal/radiation effects , Caribbean Region , Central Nervous System/metabolism , Central Nervous System/radiation effects , Gene Expression Profiling , Magnetic Fields , Orientation/physiology , Palinuridae/genetics , Palinuridae/metabolism , Transcriptome/radiation effects
12.
Commun Biol ; 3(1): 316, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561887

ABSTRACT

Domestication begins with the selection of animals showing less fear of humans. In most domesticates, selection signals for tameness have been superimposed by intensive breeding for economical or other desirable traits. Old World camels, conversely, have maintained high genetic variation and lack secondary bottlenecks associated with breed development. By re-sequencing multiple genomes from dromedaries, Bactrian camels, and their endangered wild relatives, here we show that positive selection for candidate genes underlying traits collectively referred to as 'domestication syndrome' is consistent with neural crest deficiencies and altered thyroid hormone-based signaling. Comparing our results with other domestic species, we postulate that the core set of domestication genes is considerably smaller than the pan-domestication set - and overlapping genes are likely a result of chance and redundancy. These results, along with the extensive genomic resources provided, are an important contribution to understanding the evolutionary history of camels and the genomic features of their domestication.


Subject(s)
Camelus/genetics , Selection, Genetic , Animals , Domestication , Genetic Variation , Genetics, Population , Genome , Germanium , Organometallic Compounds , Polymorphism, Single Nucleotide , Propionates , Whole Genome Sequencing
13.
Curr Biol ; 30(4): R155-R156, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32097638

ABSTRACT

Evidence from live gray whale strandings suggests that their navigation may be disrupted by increased radio frequency noise generated by solar storms, suggesting the potential for magnetoreception in this species.


Subject(s)
Noise/adverse effects , Radio Waves/adverse effects , Whales/physiology , Acoustics , Animals , Atmosphere , Conservation of Natural Resources
14.
Behav Processes ; 172: 104058, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954808

ABSTRACT

Magnetoreception remains one of the most enigmatic of animal senses. Rainbow trout (Oncorhynchus mykiss) represent an ideal species to study this sense, as magnetoreception based upon microscopic particles of magnetite is suspected to play an important role in their orientation and navigation. Here we found that compared with controls, a magnetic pulse (a treatment commonly used to demonstrate magnetite-based magnetoreception) can induce orientation behavior in juvenile rainbow trout on a specific experimental day. Multiple circular-linear regression also indicated that this effect could at least be partially explained by daily variation in solar electromagnetic activity (i.e., sunspot count and disturbance storm time index). These results are consistent with magnetite-based magnetoreception in rainbow trout and suggest that 1) solar activity may impact magnetic orientation and 2) researchers should be cognizant of its potential consequences on studies of magnetoreception.


Subject(s)
Magnetic Phenomena , Oncorhynchus mykiss , Orientation, Spatial , Animals
15.
G3 (Bethesda) ; 9(11): 3531-3536, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31519748

ABSTRACT

In the mid-1990s, the population size of Florida panthers became so small that many individuals manifested traits associated with inbreeding depression (e.g., heart defects, cryptorchidism, high pathogen-parasite load). To mitigate these effects, pumas from Texas were introduced into South Florida to augment genetic variation in Florida panthers. In this study, we report a de novo puma genome assembly and annotation after resequencing 10 individual genomes from partial Florida-Texas-F1 trios. The final genome assembly consisted of ∼2.6 Gb and 20,561 functionally annotated protein-coding genes. Foremost, expanded gene families were associated with neuronal and embryological development, whereas contracted gene families were associated with olfactory receptors. Despite the latter, we characterized 17 positively selected genes related to the refinement of multiple sensory perceptions, most notably to visual capabilities. Furthermore, genes under positive selection were enriched for the targeting of proteins to the endoplasmic reticulum, degradation of mRNAs, and transcription of viral genomes. Nearly half (48.5%) of ∼6.2 million SNPs analyzed in the total sample set contained putative unique Texas alleles. Most of these alleles were likely inherited to subsequent F1 Florida panthers, as these individuals manifested a threefold increase in observed heterozygosity with respect to their immediate, canonical Florida panther predecessors. Demographic simulations were consistent with a recent colonization event in North America by a small number of founders from South America during the last glacial period. In conclusion, we provide an extensive set of genomic resources for pumas and elucidate the genomic effects of genetic rescue on this iconic conservation success story.


Subject(s)
Conservation of Natural Resources , Genome , Puma/genetics , Animals , Comparative Genomic Hybridization , Genetic Variation
16.
Front Genet ; 10: 502, 2019.
Article in English | MEDLINE | ID: mdl-31231423

ABSTRACT

Myostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary (Camelus dromedarius) at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids. 3D modeling highlighted several non-conservative SNP variants compared to the bovine, as well as putative functional variants involved in the stability of the myostatin dimer. NGS data for nine dromedaries from various countries revealed 66 novel SNPs, all of them falling either upstream or downstream the coding region. The analysis also confirmed the presence of three previously described SNPs in intron 1, predicted here to alter both splicing and transcription factor binding sites (TFBS), thus possibly impacting myostatin processing and/or regulation. Several putative TFBS were identified in the myostatin upstream region, some of them belonging to the myogenic regulatory factor family. Patterns of SNP distribution across countries, as suggested by Bayesian clustering of the nine dromedaries using the 69 SNPs, pointed to weak geographic differentiation, in line with known recurrent gene flow at ancient trading centers along caravan routes. Myostatin expression was investigated in a set of 8 skeletal muscles, both at transcript and protein level, via Digital Droplet PCR and Western Blotting, respectively. No significant differences were observed at the transcript level, while, at the protein level, the only significant differences concerned the promyostatin dimer (75 kDa), in four pair-wise comparisons, all involving the tensor fasciae latae muscle. Beside the mentioned band at 75 kDa, additional bands were observed at around 40 and 25 kDa, corresponding to the promyostatin monomer and the active C-terminal myostatin dimer, respectively. Their weaker intensity suggests that the unprocessed myostatin dimers could act as important reservoirs of slowly available myostatin forms. Under this assumption, the sequential cleavage steps may contribute additional layers of control within an already complex regulatory framework.

17.
J Hered ; 110(3): 261-274, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067326

ABSTRACT

The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.


Subject(s)
Animal Diseases/etiology , Animals, Wild , Genomics , Research , Animal Diseases/epidemiology , Animal Diseases/transmission , Animals , Biodiversity , Biological Evolution , Computational Biology/methods , Disease Susceptibility , Ecology , Environment , Genome , Genomics/methods , Host-Pathogen Interactions/genetics , Humans
18.
Proc Biol Sci ; 286(1897): 20182929, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963849

ABSTRACT

Coleoid cephalopods show unique morphological and neural novelties, such as arms with tactile and chemosensory suckers and a large complex nervous system. The evolution of such cephalopod novelties has been attributed at a genomic level to independent gene family expansions, yet the exact association and the evolutionary timing remain unclear. In the octopus genome, one such expansion occurred in the G-protein-coupled receptors (GPCRs) repertoire, a superfamily of proteins that mediate signal transduction. Here, we assessed the evolutionary history of this expansion and its relationship with cephalopod novelties. Using phylogenetic analyses, at least two cephalopod- and two octopus-specific GPCR expansions were identified. Signatures of positive selection were analysed within the four groups, and the locations of these sequences in the Octopus bimaculoides genome were inspected. Additionally, the expression profiles of cephalopod GPCRs across various tissues were extracted from available transcriptomic data. Our results reveal the evolutionary history of cephalopod GPCRs. Unexpanded cephalopod GPCRs shared with other bilaterians were found to be mainly nervous tissue specific. By contrast, duplications that are shared between octopus and the bobtail squid or specific to the octopus' lineage generated copies with divergent expression patterns devoted to tissues outside of the brain. The acquisition of novel expression domains was accompanied by gene order rearrangement through either translocation or duplication and gene loss. Lastly, expansions showed signs of positive selection and some were found to form tandem clusters with shared conserved expression profiles in cephalopod innovations such as the axial nerve cord. Altogether, our results contribute to the understanding of the molecular and evolutionary history of signal transduction and provide insights into the role of this expansion during the emergence of cephalopod novelties and/or adaptations.


Subject(s)
Cephalopoda/genetics , Evolution, Molecular , Genome , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Animals , Receptors, G-Protein-Coupled/metabolism , Transcriptome
19.
J Exp Biol ; 221(Pt 23)2018 11 27.
Article in English | MEDLINE | ID: mdl-30322978

ABSTRACT

A major goal of sensory ecology is to identify factors that underlie sensory-trait variation. One open question centers on why fishes show the greatest diversity among vertebrates in their capacity to detect color (i.e. spectral sensitivity). Over the past several decades, λmax values (photoreceptor class peak sensitivity) and chromacy (photoreceptor class number) have been cataloged for hundreds of fish species, yet the ecological basis of this diversity and the functional significance of high chromacy levels (e.g. tetra- and pentachromacy) remain unclear. In this study, we examined phylogenetic, physiological and ecological patterns of spectral sensitivity of ray-finned fishes (Actinoptergyii) via a meta-analysis of data compiled from 213 species. Across the fishes sampled, our results indicate that trichromacy is most common, ultraviolet λmax values are not found in monochromatic or dichromatic species, and increasing chromacy, including from tetra- to pentachromacy, significantly increases spectral sensitivity range. In an ecological analysis, multivariate phylogenetic latent liability modeling was performed to analyze correlations between chromacy and five hypothesized predictors (depth, habitat, diet, body coloration, body size). In a model not accounting for phylogenetic relatedness, each predictor with the exception of habitat significantly correlated with chromacy: a positive relationship in body color and negative relationships with body size, diet and depth. However, after phylogenetic correction, the only remaining correlated predictor was depth. The findings of this study indicate that phyletic heritage and depth are important factors in fish spectral sensitivity and impart caution about excluding phylogenetic comparative methods in studies of sensory trait variation.


Subject(s)
Color Vision/physiology , Ecosystem , Fishes/classification , Fishes/physiology , Adaptation, Biological , Animals , Body Size , Diet , Phylogeny
20.
Biol Lett ; 14(6)2018 06.
Article in English | MEDLINE | ID: mdl-29875210

ABSTRACT

The ability to perceive the Earth's magnetic field, or magnetoreception, exists in numerous animals. Although the mechanism underlying magnetoreception has not been clearly established in any species, in salmonid fish, it is hypothesized to occur by means of crystals of magnetite associated with nervous tissue such as the brain, olfactory organ or retina. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to a brief magnetic pulse known to disrupt magnetic orientation behaviour in several animals. Changes in gene expression induced by the pulse were then examined in the retina. Analyses indicated that the pulse elicited differential expression of only a single gene, gamma-crystallin M3-like (crygm3). The near absence of an effect of the magnetic pulse on gene expression in the retina stands in sharp contrast to a recent study in which 181 genes were differentially expressed in brain tissue of O. mykiss after exposure to the same pulse. Overall, our results suggest either that magnetite-based magnetoreceptors in trout are not located in the retina, or else that they are unaffected by magnetic pulses that can disrupt magnetic orientation behaviour in animals.


Subject(s)
Magnetic Fields , Oncorhynchus mykiss/genetics , Retina , Animals , Gene Expression Profiling , Oncorhynchus mykiss/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...