Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399433

ABSTRACT

Magnesium sulfate (MagSul) is used clinically to prevent eclamptic seizures during pregnancy and as a tocolytic for preterm labor. More recently, it has been implicated as offering neural protection in utero for at-risk infants. However, evidence is mixed. Some studies found that MagSul reduced the incidence of cerebral palsy (CP) but did not improve other measures of neurologic function. Others did not find any improvement in outcomes. Inconsistencies in the literature may reflect the fact that sex effects are largely ignored, despite evidence that MagSul shows sex effects in animal models of neonatal brain injury. The current study used retrospective infant data to assess differences in developmental outcomes as a function of sex and MagSul treatment. We found that on 18-month neurodevelopmental cognitive and language measures, preterm males treated with MagSul (n = 209) had significantly worse scores than their untreated counterparts (n = 135; p < 0.05). Female preterm infants treated with MagSul (n = 220), on the other hand, showed a cognitive benefit relative to untreated females (n = 123; p < 0.05). No significant effects of MagSul were seen among females on language (p > 0.05). These results have tremendous implications for risk-benefit considerations in the ongoing use of MagSul and may explain why benefits have been hard to identify in clinical trials when sex is not considered.

2.
Learn Mem ; 30(10): 271-277, 2023 10.
Article in English | MEDLINE | ID: mdl-37802548

ABSTRACT

Historically, the development of valid and reliable methods for assessing higher-order cognitive abilities (e.g., rule learning and transfer) has been difficult in rodent models. To date, limited evidence supports the existence of higher cognitive abilities such as rule generation and complex decision-making in mice, rats, and rabbits. To this end, we sought to develop a task that would require mice to learn and transfer a rule. We trained mice to visually discriminate a series of images (image set, six total) of increasing complexity following three stages: (1) learn a visual target, (2) learn a rule (ignore any new images around the target), and finally (3) apply this rule in abstract form to a comparable but new image set. To evaluate learning for each stage, we measured (1) days (and performance by day) to discriminate the original target at criterion, (2) days (and performance by day) to get back to criterion when images in the set were altered by the introduction of distractors (rule learning), and (3) overall days (and performance by day) to criterion when experienced versus naïve cohorts of mice were tested on the same image set (rule transfer). Twenty-seven wild-type male C57 mice were tested using Bussey-Saksida touchscreen operant conditioning boxes (Lafayette Instruments). Two comparable black-white image sets were delivered sequentially (counterbalanced for order) to two identical cohorts of mice. Results showed that all mice were able to effectively learn their initial target image and could recall it >80 d later. We also found that mice were able to quickly learn and apply a "rule" : Ignore new distractors and continue to identify their visual target embedded in more complex images. The presence of rule learning was supported because performance criterion thresholds were regained much faster than initial learning when distractors were introduced. On the other hand, mice appeared unable to transfer this rule to a new set of stimuli. This is supported because visual discrimination curves for a new image set were no better than an initial (naïve) learning by a matched cohort of mice. Overall results have important implications for phenotyping research and particularly for the modeling of complex disorders in mice.


Subject(s)
Conditioning, Operant , Learning , Humans , Mice , Male , Rats , Animals , Rabbits , Visual Perception , Discrimination, Psychological , Cognition , Discrimination Learning
3.
Genes Brain Behav ; 21(6): e12808, 2022 07.
Article in English | MEDLINE | ID: mdl-35419947

ABSTRACT

Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with KIAA0319 as a main candidate. Animal models targeting the rodent homolog (Kiaa0319) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of Kiaa0319 expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, Kiaa0319 knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested Kiaa0319 KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that Kiaa0319 KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for KIAA0319 in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm KIAA0319 variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.


Subject(s)
Dyslexia , Geniculate Bodies , Animals , Auditory Perception/genetics , Dyslexia/genetics , Mice , Mice, Knockout , RNA, Small Interfering , Rats
4.
Genes (Basel) ; 12(2)2021 01 24.
Article in English | MEDLINE | ID: mdl-33498833

ABSTRACT

Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is "phenotype free". Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability.


Subject(s)
Extracellular Matrix Proteins , Genetic Association Studies , Genetic Predisposition to Disease , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Mutation , Usher Syndromes/diagnosis , Usher Syndromes/genetics , Animals , Disease Models, Animal , Genotype , Male , Mice , Mice, Knockout , Phenotype
5.
Pharmacol Biochem Behav ; 196: 172975, 2020 09.
Article in English | MEDLINE | ID: mdl-32593787

ABSTRACT

Catechol-o-methyltransferase (COMT) is an enzyme that metabolizes catecholamines, and is crucial for clearance of dopamine (DA) in prefrontal cortex. Val158Met polymorphism, which causes a valine (Val) to methionine (Met) substitution at codon 158, is reported to be associated with human psychopathologies in some studies. The Val/Val variant of the enzyme results in higher dopamine metabolism, which results in reduced dopamine transmission. Thus, it is important to investigate the relation between Val158Met polymorphisms using rodent models of psychiatric symptoms, including negative symptoms such as motivational dysfunction. In the present study, humanized COMT transgenic mice with two genotype groups (Val/Val (Val) and Met/Met (Met) homozygotes) and wild-type (WT) mice from the S129 background were tested using a touchscreen effort-based choice paradigm. Mice were trained to choose between delivery of a preferred liquid diet that reinforced panel pressing on various fixed ratio (FR) schedules (high-effort alternative), vs. intake of pellets concurrently available in the chamber (low-effort alternative). Panel pressing requirements were controlled by varying the FR levels (FR1, 2, 4, 8, 16) in ascending and descending sequences across weeks of testing. All mice were able to acquire the initial touchscreen operant training, and there was an inverse relationship between the number of reinforcers delivered by panel pressing and pellet intake across different FR levels. There was a significant group x FR level interaction in the ascending limb, with panel presses in the Val group being significantly lower than the WT group in FR1-8, and lower than Met in FR4. These findings indicate that the humanized Val allele in mice modulates FR/pellet-choice performance, as marked by lower levels of panel pressing in the Val group when the ratio requirement was moderately high. These studies may contribute to the understanding of the role of COMT polymorphisms in negative symptoms such as motivational dysfunctions in schizophrenic patients.


Subject(s)
Catechol O-Methyltransferase/genetics , Decision Making , Methionine/genetics , Polymorphism, Genetic , Valine/genetics , Animals , Auditory Perception/genetics , Catechol O-Methyltransferase/chemistry , Humans , Male , Mice , Mice, Transgenic
6.
Commun Biol ; 3(1): 180, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313182

ABSTRACT

Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems.


Subject(s)
Auditory Perception/genetics , Auditory Perceptual Disorders/genetics , Child Language , Extracellular Matrix Proteins/genetics , Hearing Disorders/genetics , Hearing/genetics , Language Development Disorders/genetics , Polymorphism, Single Nucleotide , Age Factors , Animals , Auditory Perceptual Disorders/physiopathology , Auditory Perceptual Disorders/psychology , Child , Child, Preschool , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Hearing Disorders/physiopathology , Hearing Disorders/psychology , Heterozygote , Humans , Language Development Disorders/physiopathology , Language Development Disorders/psychology , Longitudinal Studies , Male , Mice, 129 Strain , Mice, Knockout , Phenotype , Risk Assessment , Risk Factors , United Kingdom , Vocalization, Animal , Whole Genome Sequencing
7.
Psychopharmacology (Berl) ; 237(1): 33-43, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31392358

ABSTRACT

RATIONALE: Effort-based decision-making tasks offer animals choices between preferred reinforcers that require high effort to obtain vs. low effort/low reward options. The neural mechanisms of effort-based choice are widely studied in rats, and evidence indicates that mesolimbic dopamine (DA) and related neural systems play a key role. Fewer studies of effort-based choice have been performed in mice. OBJECTIVES: The present studies used touchscreen operant procedures (Bussey-Saksida boxes) to assess effort-based choice in mice. METHODS: CD1 mice were assessed on a concurrent fixed ratio 1 panel pressing/choice procedure. Mice were allowed to choose between rearing to press an elevated panel on the touchscreen for a preferred food (strawberry milkshake) vs. consuming a concurrently available less preferred alternative (high carbohydrate pellets). RESULTS: The DA D2 antagonist haloperidol (0.05-0.15 mg/kg IP) produced a dose-related decrease in panel pressing. Intake of food pellets was not reduced by haloperidol, and in fact, there was a significant quadratic trend, indicating a tendency for pellet intake to increase at low/moderate doses. In contrast, reinforcer devaluation by removing food restriction substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred milkshake vs. pellets. Haloperidol did not affect food intake or preference. CONCLUSION: Haloperidol reduced the tendency to work for food, but this reduction was not due to decreases in primary food motivation or preference. Mouse touchscreen procedures demonstrate effects of haloperidol that are similar but not identical to those shown in rats. These rodent studies may be relevant for understanding motivational dysfunctions in humans.


Subject(s)
Choice Behavior/drug effects , Decision Making/drug effects , Dopamine Antagonists/pharmacology , Feeding Behavior/drug effects , Haloperidol/pharmacology , Animals , Dopamine/pharmacology , Male , Mice
8.
Int J Dev Neurosci ; 72: 13-21, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30385192

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a core set of atypical behaviors in social-communicative and repetitive-motor domains. Individual profiles are widely heterogeneous and include language skills ranging from nonverbal to hyperlexic. The causal mechanisms underlying ASD remain poorly understood but appear to include a complex combination of polygenic and environmental risk factors. SHANK3 (SH3 and multiple ankyrin repeat domains 3) is one of a subset of well-replicated ASD-risk genes (i.e., genes demonstrating ASD associations in multiple studies), with haploinsufficiency of SHANK3 following deletion or de novo mutation seen in about 1% of non-syndromic ASD. SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. In order to more closely evaluate the contribution of SHANK3 to neurodevelopmental expression of ASD, a knockout mouse model with a mutation in the PDZ domain was developed. Initial research showed compulsive/repetitive behaviors and impaired social interactions in these mice, replicating two core ASD features. The current study was designed to further examine Shank3B heterozygous and homozygous knockout mice for behaviors that might map onto atypical language in ASD (e.g., auditory processing, and learning/memory). We report findings of repetitive and atypical aggressive social behaviors (replicating prior reports), novel evidence that Shank3B KO mice have atypical auditory processing (low-level enhancements that might have a direct relationship with heightened pitch discrimination seen in ASD), as well as robust learning impairments.


Subject(s)
Learning Disabilities/complications , Learning Disabilities/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Pitch Discrimination/physiology , Sensation Disorders/etiology , Acoustic Stimulation , Analysis of Variance , Animals , Disease Models, Animal , Exploratory Behavior/physiology , Hippocampus/pathology , Learning Disabilities/pathology , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Motor Activity/genetics , Nerve Tissue Proteins/metabolism , Reflex, Startle/genetics , Rotarod Performance Test , Social Dominance
9.
Int J Dev Neurosci ; 70: 46-55, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29476789

ABSTRACT

The current study investigated behavioral and post mortem neuroanatomical outcomes in Wistar rats with a neonatal hypoxic-ischemic (HI) brain injury induced on postnatal day 6 (P6; Rice-Vannucci HI method; Rice et al., 1981). This preparation models brain injury seen in premature infants (gestational age (GA) 32-35 weeks) based on shared neurodevelopmental markers at time of insult, coupled with similar neuropathologic sequelae (Rice et al., 1981; Workman et al., 2013). Clinically, HI insult during this window is associated with poor outcomes that include attention deficit hyperactivity disorder (ADHD), motor coordination deficits, spatial memory deficits, and language/learning disabilities. To assess therapies that might offer translational potential for improved outcomes, we used a P6 HI rat model to measure the behavioral and neuroanatomical effects of two prospective preterm neuroprotective treatments - hypothermia and caffeine. Hypothermia (aka "cooling") is an approved and moderately efficacious intervention therapy for fullterm infants with perinatal hypoxic-ischemic (HI) injury, but is not currently approved for preterm use. Caffeine is a respiratory stimulant used during removal of infants from ventilation but has shown surprising long-term benefits, leading to consideration as a therapy for HI of prematurity. Current findings support caffeine as a preterm neuroprotectant; treatment significantly improved some behavioral outcomes in a P6 HI rat model and partially rescued neuropathology. Hypothermia treatment (involving core temperature reduction by 4 °C for 5 h), conversely, was found to be largely ineffective and even deleterious for some measures in both HI and sham rats. These results have important implications for therapeutic intervention in at-risk preterm populations, and promote caution in the application of hypothermia protocols to at-risk premature infants without further research.


Subject(s)
Behavior, Animal/drug effects , Brain/pathology , Caffeine/therapeutic use , Central Nervous System Stimulants/therapeutic use , Hypothermia, Induced , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/psychology , Acoustic Stimulation , Animals , Animals, Newborn , Female , Hypoxia-Ischemia, Brain/prevention & control , Maze Learning/drug effects , Neuroprotective Agents , Postural Balance/drug effects , Pregnancy , Rats , Rats, Wistar , Reflex, Startle/drug effects
10.
Brain Lang ; 172: 30-38, 2017 09.
Article in English | MEDLINE | ID: mdl-25989970

ABSTRACT

Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia.


Subject(s)
Dyslexia/genetics , Genetic Predisposition to Disease , Learning/physiology , Memory Disorders/genetics , Mutation , Nerve Tissue Proteins/genetics , Animals , Disease Models, Animal , Genotype , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Reading
11.
Neural Plast ; 2016: 2585230, 2016.
Article in English | MEDLINE | ID: mdl-27042359

ABSTRACT

Hypoxia ischemia (HI) is a recognized risk factor among late-preterm infants, with HI events leading to varied neuropathology and cognitive/behavioral deficits. Studies suggest a sex difference in the incidence of HI and in the severity of subsequent behavioral deficits (with better outcomes in females). Mechanisms of a female advantage remain unknown but could involve sex-specific patterns of compensation to injury. Neuroprotective hypothermia is also used to ameliorate HI damage and attenuate behavioral deficits. Though currently prescribed only for HI in term infants, cooling has potential intrainsult applications to high-risk late-preterm infants as well. To address this important clinical issue, we conducted a study using male and female rats with a postnatal (P) day 7 HI injury induced under normothermic and hypothermic conditions. The current study reports patterns of neuropathology evident in postmortem tissue. Results showed a potent benefit of intrainsult hypothermia that was comparable for both sexes. Findings also show surprisingly different patterns of compensation in the contralateral hemisphere, with increases in hippocampal thickness in HI females contrasting reduced thickness in HI males. Findings provide a framework for future research to compare and contrast mechanisms of neuroprotection and postinjury plasticity in both sexes following a late-preterm HI insult.


Subject(s)
Hippocampus/pathology , Hypothermia, Induced , Hypoxia-Ischemia, Brain/pathology , Neuronal Plasticity , Animals , Animals, Newborn , Female , Male , Pyramidal Cells/pathology , Rats , Rats, Wistar , Sex Characteristics
12.
Behav Brain Res ; 303: 201-7, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26873041

ABSTRACT

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with core symptoms of atypical social interactions and repetitive behaviors. It has also been reported that individuals with ASD have difficulty with multisensory integration, and this may disrupt higher-order cognitive abilities such as learning and social communication. Impairments in the integration of sensory information could in turn reflect diminished cross-modal white matter connectivity. Moreover, the genetic contribution in ASD appears to be strong, with heritability estimates as high as 90%. However, no single gene has been identified, and over 1000 risk genes have been reported. One of these genes - contactin-associated-like-protein 2 (CNTNAP2) - was first associated with Specific Language Impairment, and more recently has been linked to ASD. CNTNAP2 encodes a cell adhesion protein regulating synaptic signal transmission. To better understand the behavioral and biological underlying mechanisms of ASD, a transgenic mouse model was created with a genetic knockout (KO) of the rodent homolog Cntnap2. Initial studies on this mouse revealed poor social interactions, behavioral perseveration, and reduced vocalizations-all strongly resembling human ASD symptoms. Cntnap2 KO mice also show abnormalities in myelin formation, consistent with a hypo-connectivity model of ASD. The current study was designed to further assess the behavioral phenotype of this mouse model, with a focus on learning and memory. Cntnap2 KO and wild-type mice were tested on a 4/8 radial arm water maze for 14 consecutive days. Error scores (total, working memory, reference memory, initial and repeated reference memory), latency and average turn angle were independently assessed using a 2×14 repeated measures ANOVA. Results showed that Cntnap2 KO mice exhibited significant deficits in working and reference memory during the acquisition period of the task. During the retention period (i.e., after asymptote in errors), Cntnap2 KO mice performed comparably to wild-type mice. These findings suggest that CNTNAP2 may influence the development of neural systems important to learning and cross-modal integration, and that disruption of this function could be associated with delayed learning in ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Learning/physiology , Membrane Proteins/physiology , Memory/physiology , Nerve Tissue Proteins/physiology , Animals , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics
13.
Cereb Cortex ; 26(9): 3705-3718, 2016 09.
Article in English | MEDLINE | ID: mdl-26250775

ABSTRACT

Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.


Subject(s)
Glutamic Acid/metabolism , Microtubule-Associated Proteins/metabolism , Neocortex/physiology , Nerve Net/physiology , Neurons/physiology , Synaptic Transmission/physiology , Animals , Mice , Microtubule-Associated Proteins/genetics , Mutation , Neurotransmitter Agents/metabolism , Somatosensory Cortex/physiology , Up-Regulation/physiology
14.
Behav Neurosci ; 129(6): 731-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501174

ABSTRACT

Genetic epidemiological studies support a role for CNTNAP2 in developmental language disorders such as autism spectrum disorder, specific language impairment, and dyslexia. Atypical language development and function represent a core symptom of autism spectrum disorder (ASD), with evidence suggesting that aberrant auditory processing-including impaired spectrotemporal processing and enhanced pitch perception-may both contribute to an anomalous language phenotype. Investigation of gene-brain-behavior relationships in social and repetitive ASD symptomatology have benefited from experimentation on the Cntnap2 knockout (KO) mouse. However, auditory-processing behavior and effects on neural structures within the central auditory pathway have not been assessed in this model. Thus, this study examined whether auditory-processing abnormalities were associated with mutation of the Cntnap2 gene in mice. Cntnap2 KO mice were assessed on auditory-processing tasks including silent gap detection, embedded tone detection, and pitch discrimination. Cntnap2 knockout mice showed deficits in silent gap detection but a surprising superiority in pitch-related discrimination as compared with controls. Stereological analysis revealed a reduction in the number and density of neurons, as well as a shift in neuronal size distribution toward smaller neurons, in the medial geniculate nucleus of mutant mice. These findings are consistent with a central role for CNTNAP2 in the ontogeny and function of neural systems subserving auditory processing and suggest that developmental disruption of these neural systems could contribute to the atypical language phenotype seen in autism spectrum disorder.


Subject(s)
Auditory Perception/physiology , Geniculate Bodies/pathology , Geniculate Bodies/physiopathology , Membrane Proteins/deficiency , Nerve Tissue Proteins/deficiency , Acoustic Stimulation , Animals , Auditory Pathways/pathology , Auditory Pathways/physiopathology , Autism Spectrum Disorder , Cell Count , Cohort Studies , Hearing Tests , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Neurons/pathology , Reflex, Startle/physiology
15.
Dev Neurosci ; 37(4-5): 440-52, 2015.
Article in English | MEDLINE | ID: mdl-25791036

ABSTRACT

Infants born prematurely are at risk for cardiovascular events causing hypoxia-ischemia (HI; reduced blood and oxygen to the brain). HI in turn can cause neuropathology, though patterns of damage are sometimes diffuse and often highly variable (with clinical heterogeneity further magnified by rapid development). As a result, though HI injury is associated with long-term behavioral and cognitive impairments in general, pathology indices for specific infants can provide only limited insight into individual prognosis. The current paper addresses this important clinical issue using a rat model that simulates unilateral HI in a late preterm infant coupled with long-term behavioral evaluation in two processing domains - auditory discrimination and spatial learning/memory. We examined the following: (1) whether deficits on one task would predict deficits on the other (suggesting that subjects with more severe injury perform worse across all cognitive domains) or (2) whether domain-specific outcomes among HI-injured subjects would be uncorrelated (suggesting differential damage to orthogonal neural systems). All animals (sham and HI) received initial auditory testing and were assigned to additional auditory testing (group A) or spatial maze testing (group B). This allowed within-task (group A) and between-task (group B) correlation. Anatomic measures of cortical, hippocampal and ventricular volume (indexing HI damage) were also obtained and correlated against behavioral measures. Results showed that auditory discrimination in the juvenile period was not correlated with spatial working memory in adulthood (group B) in either sham or HI rats. Conversely, early auditory processing performance for group A HI animals significantly predicted auditory deficits in adulthood (p = 0.05; no correlation in shams). Anatomic data also revealed significant relationships between the volumes of different brain areas within both HI and shams, but anatomic measures did not correlate with any behavioral measure in the HI group (though we saw a hippocampal/spatial correlation in shams, in the expected direction). Overall, current data provide an impetus to enhance tools for characterizing individual HI-related pathology in neonates, which could provide more accurate individual prognoses within specific cognitive/behavioral domains and thus improved patient-specific early interventions.


Subject(s)
Auditory Perception/physiology , Auditory Perceptual Disorders/physiopathology , Brain/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Memory, Short-Term/physiology , Spatial Memory/physiology , Animals , Animals, Newborn , Auditory Perceptual Disorders/etiology , Behavior, Animal/physiology , Brain/pathology , Discrimination, Psychological/physiology , Disease Models, Animal , Hypoxia-Ischemia, Brain/complications , Male , Rats , Rats, Wistar
16.
Behav Brain Res ; 282: 61-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25549859

ABSTRACT

Malformations of cortical development (MCD) have been observed in human reading and language impaired populations. Injury-induced MCD in rodent models of reading disability show morphological changes in the auditory thalamic nucleus (medial geniculate nucleus; MGN) and auditory processing impairments, thus suggesting a link between MCD, MGN, and auditory processing behavior. Previous neuroanatomical examination of a BXD29 recombinant inbred strain (BXD29-Tlr4(lps-2J)/J) revealed MCD consisting of bilateral subcortical nodular heterotopia with partial callosal agenesis. Subsequent behavioral characterization showed a severe impairment in auditory processing-a deficient behavioral phenotype seen across both male and female BXD29-Tlr4(lps-2J)/J mice. In the present study we expanded upon the neuroanatomical findings in the BXD29-Tlr4(lps-2J)/J mutant mouse by investigating whether subcortical changes in cellular morphology are present in neural structures critical to central auditory processing (MGN, and the ventral and dorsal subdivisions of the cochlear nucleus; VCN and DCN, respectively). Stereological assessment of brain tissue of male and female BXD29-Tlr4(lps-2J)/J mice previously tested on an auditory processing battery revealed overall smaller neurons in the MGN of BXD29-Tlr4(lps-2J)/J mutant mice in comparison to BXD29/Ty coisogenic controls, regardless of sex. Interestingly, examination of the VCN and DCN revealed sexually dimorphic changes in neuronal size, with a distribution shift toward larger neurons in female BXD29-Tlr4(lps-2J)/J brains. These effects were not seen in males. Together, the combined data set supports and further expands the observed co-occurrence of MCD, auditory processing impairments, and changes in subcortical anatomy of the central auditory pathway. The current stereological findings also highlight sex differences in neuroanatomical presentation in the presence of a common auditory behavioral phenotype.


Subject(s)
Auditory Pathways/pathology , Cochlear Nucleus/pathology , Geniculate Bodies/pathology , Malformations of Cortical Development/pathology , Neurons/pathology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Neurologic Mutants , Periventricular Nodular Heterotopia/pathology , Toll-Like Receptor 4/genetics
17.
Brain Sci ; 4(2): 240-72, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24961760

ABSTRACT

Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36-38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD-a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to accommodating memory deficits in children suffering from cognitive impairments following neonatal HI.

18.
Exp Neurol ; 254: 54-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24434477

ABSTRACT

Hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) is one of the most common injuries among preterm infants and term infants with birth complications. Both populations show cognitive/behavioral deficits, including impairments in sensory, learning/memory, and attention domains. Clinical data suggests a sex difference in HI outcomes, with males exhibiting more severe cognitive/behavioral deficits relative to matched females. Our laboratory has also reported more severe behavioral deficits among male rats with induced HI relative to females with comparable injury (Hill et al., 2011a,b). The current study initially examined published clinical studies from the past 20years where long-term IQ outcome scores for matched groups of male and female premature infants were reported separately (IQ being the most common outcome measure). A meta-analysis revealed a female "advantage," as indicated by significantly better scores on performance and full scale IQ (but not verbal IQ) for premature females. We then utilized a rodent model of neonatal HI injury to assess sham and postnatal day 7 (P7) HI male and female rats on a battery of behavioral tasks. Results showed expected deficits in HI male rats, but also showed task-dependent sex differences, with HI males having significantly larger deficits than HI females on some tasks but equivalent deficits on other tasks. In contrast to behavioral results, post mortem neuropathology associated with HI was comparable across sex. These findings suggest: 1) neonatal female "protection" in some behavioral domains, as indexed by superior outcome following early injury relative to males; and 2) female protection may entail sex-specific plasticity or compensation, rather than a reduction in gross neuropathology. Further exploration of the mechanisms underlying this sex effect could aid in neuroprotection efforts for at-risk neonates in general, and males in particular. Moreover, our current report of comparable anatomical damage coupled with differences in cognitive outcomes (by sex) provides a framework for future studies to examine neural mechanisms underlying sex differences in cognition and behavior in general.


Subject(s)
Behavior, Animal/physiology , Hypoxia-Ischemia, Brain/physiopathology , Infant, Premature/physiology , Sex Characteristics , Animals , Attention/physiology , Auditory Perception/physiology , Conditioning, Psychological/physiology , Disease Models, Animal , Female , Humans , Infant, Newborn , Intelligence/physiology , Male , Maze Learning/physiology , Memory/physiology , Pregnancy , Rats , Rats, Wistar , Reflex, Startle/physiology
19.
Int J Dev Neurosci ; 33: 1-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24184287

ABSTRACT

Children born prematurely (<37 weeks gestational age) or at very low birth weight (VLBW; <1500g) are at increased risk for hypoxic ischemic (HI) brain injuries. Term infants can also suffer HI from birth complications. In both groups, blood/oxygen delivery to the brain is compromised, often resulting in brain damage and later cognitive delays (e.g., language deficits). Literature suggests that language delays in a variety of developmentally impaired populations (including specific language impairment (SLI), dyslexia, and early HI-injury) may be associated with underlying deficits in rapid auditory processing (RAP; the ability to process and discriminate brief acoustic cues). Data supporting a relationship between RAP deficits and poor language outcomes is consistent with the "magnocellular theory," which purports that damage to or loss of large (magnocellular) cells in thalamic nuclei could underlie disruptions in temporal processing of sensory input, possibly including auditory (medial geniculate nucleus; MGN) information This theory could be applied to neonatal HI populations that show subsequent RAP deficits. In animal models of neonatal HI, persistent RAP deficits are seen in postnatal (P)7 HI injured rats (who exhibit neuropathology comparable to term birth injury), but not in P1-3 HI injured rodents (who exhibit neuropathology comparable to human pre-term injury). The current study sought to investigate the mean cell size, cell number, and cumulative probability of cell size in the MGN of P3 HI and P7 HI injured male rats that had previously demonstrated behavioral RAP deficits. Pilot data from our lab (Alexander, 2011) previously revealed cell size abnormalities (a shift toward smaller cells) in P7 but not P1 HI injured animals when compared to shams. Our current finding support this result, with evidence of a significant shift to smaller cells in the experimental MGN of P7 HI but not P3 HI subjects. P7 HI animals also showed significantly fewer cells in the affected (right) MGN as compared P3 HI and shams animals. Moreover, cell number in the right hemisphere was found to correlate with gap detection (fewer cells=worse performance) in P7 HI injured subjects. These findings could be applied to clinical populations, providing an anatomic marker that may index potential long-term language disabilities in HI injured infants and possibly other at-risk populations.


Subject(s)
Cell Size , Geniculate Bodies/pathology , Hypoxia-Ischemia, Brain/pathology , Neurons/pathology , Acoustic Stimulation , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Cell Count , Disease Models, Animal , Female , Male , Rats , Statistics, Nonparametric
20.
Brain Sci ; 3(1): 177-90, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-24961313

ABSTRACT

Hypoxia Ischemia (HI) refers to the disruption of blood and/or oxygen delivery to the brain. Term infants suffering perinatal complications that result in decreased blood flow and/or oxygen delivery to the brain are at risk for HI. Among a variety of developmental delays in this population, HI injured infants demonstrate subsequent memory deficits. The Rice-Vannucci rodent HI model can be used to explore behavioral deficits following early HI events, as well as possible therapeutic agents to help reduce deleterious outcomes. Caffeine is an adenosine receptor antagonist that has recently shown promising results as a therapeutic agent following HI injury. The current study sought to investigate the therapeutic benefit of caffeine following early HI injury in male rats. On post-natal day (P) 7, HI injury was induced (cauterization of the right common carotid artery, followed by two hours of 8% oxygen). Male sham animals received only a midline incision with no manipulation of the artery followed by room air exposure for two hours. Subsets of HI and sham animals then received either an intraperitoneal (i.p.) injection of caffeine (10 mg/kg), or vehicle (sterile saline) immediately following hypoxia. All animals later underwent testing on the Morris Water Maze (MWM) from P90 to P95. Results show that HI injured animals (with no caffeine treatment) displayed significant deficits on the MWM task relative to shams. These deficits were attenuated by caffeine treatment when given immediately following the induction of HI. We also found a reduction in right cortical volume (ipsilateral to injury) in HI saline animals as compared to shams, while right cortical volume in the HI caffeine treated animals was intermediate. These findings suggest that caffeine is a potential therapeutic agent that could be used in HI injured infants to reduce brain injury and preserve subsequent cognitive function.

SELECTION OF CITATIONS
SEARCH DETAIL
...