Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792823

ABSTRACT

Pradofloxacin is the newest of the veterinary fluoroquinolones to be approved for use in animals-initially companion animals and most recently food animals. It has a broad spectrum of in vitro activity, working actively against Gram-positive/negative, atypical and some anaerobic microorganisms. It simultaneously targets DNA gyrase (topoisomerase type II) and topoisomerase type IV, suggesting a lower propensity to select for antimicrobial resistance. The purpose of this study was to determine the rate and extent of bacterial killing by pradofloxacin against bovine strains of Mannheimia haemolytica and Pasteurella multocida, in comparison with several other agents (ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin) using four clinically relevant drug concentrations: minimum inhibitory and mutant prevention drug concentration, maximum serum and maximum tissue drug concentrations. At the maximum serum and tissue drug concentrations, pradofloxacin killed 99.99% of M. haemolytica cells following 5 min of drug exposure (versus growth to 76% kill rate for the other agents) and 94.1-98.6% of P. multocida following 60-120 min of drug exposure (versus growth to 98.6% kill rate for the other agents). Statistically significant differences in kill rates were seen between the various drugs tested depending on drug concentration and time of sampling after drug exposure.

2.
Pathogens ; 13(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38787251

ABSTRACT

Pradofloxacin-a dual-targeting fluoroquinolone-is the most recent approved for use in food animals. Minimum inhibitory and mutant prevention concentration values were determined for pradofloxacin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin. For M. haemolytica strains, MIC50/90/100 values were ≤0.016/≤0.016/≤0.016 and MPC50/90/100 values were 0.031/0.063/0.063; for P. multocida strains, the MIC50/90/100 values ≤0.016/≤0.016/0.031 and MPC50/90/100 ≤ 0.016/0.031/0.063 for pradofloxacin. The pradofloxacin Cmax/MIC90 and Cmax/MPC90 values for M. haemolytica and P. multocida strains, respectively, were 212.5 and 53.9 and 212.5 and 109.7. Similarly, AUC24/MIC90 and AUC24/MPC90 for M. haemolytica were 825 and 209.5, and for P. multocida, they were 825 and 425.8. Pradofloxacin would exceed the mutant selection window for >12-16 h. Pradofloxacin appears to have a low likelihood for resistance selection against key bovine respiratory disease bacterial pathogens based on low MIC and MPC values.

3.
J Chemother ; : 1-9, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38339845

ABSTRACT

Nosocomial infections with drug resistant bacteria impact morbidity and mortality, length of therapy and stay and the overall cost of treatment. Key pathogens with ventilator associated pneumonia may be drug-susceptible or multi-drug resistant and inhaled amikacin has been investigated as an adjunctive therapy option. High pulmonary drug concentrations (epithelial lining fluid [ELF]) along with minimal systemic toxicity is seen as an advantage to inhaled formulations. In vitro killing of bacteria using clinically relevant drug concentrations provide insight on bug-drug interactions. The aim of this study was to measure killing of clinical isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus using the minimum inhibitory concentration (MIC), mutant prevention concentration (MPC) and median (976 µg/ml) ELF drug concentration for amikacin. Overall killing took longer at the MIC drug concentration and was inconsistent amongst the pathogens tested with the percentage of bacteria killed following 180 min of drug exposure ranging from growth in the presence of the drug to 95% kill. At the MPC drug concentrations, killing ranged from 55-88% for all pathogens following 30 min of drug exposure and increased to 99-100% following 180 min of drug exposure. At the ELF amikacin tested, killing was 81-100% following 20 min and 94-100% by 30 min of drug exposure. Rapid killing against MDR respiratory pathogens by amikacin ELF drug concentrations is encouraging.

4.
Microorganisms ; 9(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34835405

ABSTRACT

Urinary tract infections are common in dogs, necessitating antimicrobial therapy. We determined the speed and extent of in vitro killing of canine urinary tract infection pathogens by five antimicrobial agents (ampicillin, cephalexin, marbofloxacin, pradofloxacin, and trimethoprim/sulfamethoxazole) following the first 3 h of drug exposure. Minimum inhibitory and mutant prevention drug concentrations were determined for each strain. In vitro killing was determined by exposing bacteria to clinically relevant drug concentrations and recording the log10 reduction and percent kill in viable cells at timed intervals. Marbofloxacin and pradofloxacin killed more bacterial cells, and faster than other agents, depending on the time of sampling and drug concentration. Significant differences were seen between drugs for killing Escherichia coli, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus pseudintermedius strains. At the maximum urine drug concentrations, significantly more E. coli cells were killed by marbofloxacin than by ampicillin (p < 0.0001), cephalexin (p < 0.0001), and TMP/SMX (p < 0.0001) and by pradofloxacin than by cephalexin (p < 0.0001) and TMP/SMX (p < 0.0001), following 5 min of drug exposure. Rapid killing of bacteria should inform thinking on drug selection for short course therapy for uncomplicated UTIs, without compromising patient care, and is consistent with appropriate antimicrobial use and stewardship principles.

5.
Vet Dermatol ; 31(3): 187-e39, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31825131

ABSTRACT

BACKGROUND: Bacterial densities likely fluctuate during infection and may exceed the bacterial density used in susceptibility testing. As such, investigation of bacterial killing by antibiotics over a range of varying bacterial densities may provide important differences between compounds and could impact drug selection for therapy. HYPOTHESIS/OBJECTIVES: To measure killing of clinical isolates of Staphylococcus pseudintermedius and Escherichia coli by cefazolin, cefovecin, doxycycline and pradofloxacin at clinically relevant (minimum inhibitory, mutant prevention, maximum serum and maximum tissue) drug concentrations against varying densities of bacteria. ANIMALS/MATERIALS: Bacterial strains collected from dogs with urinary tract infections were studied. METHODS AND MATERIALS: High bacterial densities ranging from 106 to 109 colony forming units (cfu)/mL were exposed to minimum inhibitory, mutant prevention, blood and tissue drug concentrations, and the percentages (log10 ) of viable cells killed following 30 min, 1, 2, 4, 6, 12 and 24 h of drug exposure were quantified. RESULTS: Doxycycline exhibited bacteriostatic properties with less killing than the other three agents. For example, at a 107  cfu/mL density of S. pseudintermedius, more cells were killed by pradofloxacin (P < 0.0001) and cefovecin (P = 0.0014) but not cefazolin when compared to doxycycline at the maximum serum drug concentration following 12 h of drug exposure. CONCLUSIONS AND CLINICAL IMPORTANCE: Differences were seen between some drugs in the speed and extent of bacterial killing; this could be clinically important and may impact drug selection and length of therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Staphylococcal Infections/veterinary , Staphylococcus/drug effects , Urinary Tract Infections/veterinary , Animals , Cefazolin/pharmacology , Cephalosporins/pharmacology , Dog Diseases/microbiology , Dogs/microbiology , Doxycycline/pharmacology , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology
6.
PLoS One ; 14(1): e0210154, 2019.
Article in English | MEDLINE | ID: mdl-30629633

ABSTRACT

Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complicates drug therapy and resistance prevention is now a necessity to optimize therapy and prolong drug life. Mutant bacterial cells are said to arise spontaneously in bacterial densities of 107-109 or greater colony forming units/ml. Antibiotic drug concentration inhibiting growth of the least susceptible cell in these high density populations has been termed the mutant prevention concentration (MPC). In this study MPC and minimum inhibitory concentration (MIC) values of ceftiofur, enrofloxacin, florfenicol, tilmicosin and tulathromycin were determined against the swine pathogens A. pleuropneumoniae, P.multocida and S. suis. The following MIC90/MPC90 values (mg/L) for 67 A. pleuropneumoniae and 73 P. multocida strains respectively were as follows: A. pleuropneumoniae 0.031/0.5, ≤0.016/0.5, 0.5/2, 4/32, 2/32; P. multocida 0.004/0.25, 0.016/0.125, 0.5/0.5, 8/16, 0.5/1. For 33 S. suis strains, MIC90 values (mg/L) respectively were as follows: 1, 0.25, 4, ≥8 and ≥8. A total of 16 S. suis strains with MIC values of 0.063-0.5 mg/L to ceftiofur and 0.25-0.5 mg/L to enrofloxacin were tested by MPC; MPC values respectively were 0.5 and 1 mg/L respectively. MPC concentrations provide a dosing target which may serve to reduce amplification of bacterial subpopulations with reduced antimicrobial susceptibility. Drug potency based on MIC90 values was ceftiofur > enrofloxacin >florfenicol = tulathromycin > tilmicosin; based on MPC90 values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin.


Subject(s)
Actinobacillus pleuropneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Pasteurella multocida/drug effects , Streptococcus suis/drug effects , Swine Diseases/drug therapy , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/isolation & purification , Animal Husbandry , Animals , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Disaccharides/pharmacology , Disaccharides/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Enrofloxacin/pharmacology , Enrofloxacin/therapeutic use , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Microbial Sensitivity Tests , Pasteurella multocida/genetics , Pasteurella multocida/isolation & purification , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Swine , Swine Diseases/microbiology , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology , Thiamphenicol/therapeutic use , Tylosin/analogs & derivatives , Tylosin/pharmacology , Tylosin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...