Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4945, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418538

ABSTRACT

We introduce a novel, gaseous target optical shaping laser set-up, capable to generate short scale length, near-critical target profiles via generated colliding blast waves. These profiles are capable to maintain their compressed density for several nanoseconds, being therefore ideal for laser-plasma particle acceleration experiments in the near critical density plasma regime. Our proposed method overcomes the laser-target synchronization limitations and delivers energetic protons, during the temporal evolution of the optically shaped profile, in a time window of approximately 2.5 ns. The optical shaping of the gas-jet profiles is optimised by MagnetoHydroDynamic simulations. 3D Particle-In-Cell models, adopting the spatiotemporal profile, simulate the 45 TW femtosecond laser plasma interaction to demonstrate the feasibility of the proposed proton acceleration set-up. The optical shaping of gas-jets is performed by multiple, nanosecond laser pulse generated blastwaves. This process results in steep gradient, short scale length plasma profiles, in the near critical density regime allowing operation at high repetition rates. Notably, the Magnetic Vortex Acceleration mechanism exhibits high efficiency in coupling the laser energy into the plasma in the optically shaped targets, resulting to collimated proton beams of energies up to 14 MeV.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37855698

ABSTRACT

Laser WakeField Acceleration (LWFA) is extensively used as a high-energy electron source, with electrons achieving energies up to the GeV level. The produced electron beam characteristics depend strongly on the gas density profile. When the gaseous target is a gas jet, the gas density profile is affected by parameters, such as the nozzle geometry, the gas used, and the backing pressure applied to the gas valve. An electron source based on the LWFA mechanism has recently been developed at the Institute of Plasma Physics and Lasers. To improve controllability over the electron source, we developed a set of 3D-printed nozzles suitable for creating different gas density profiles according to the experimental necessities. Here, we present a study of the design, manufacturing, evaluation, and performance of a 3D-printed nozzle intended for LWFA experiments.

3.
Rev Sci Instrum ; 93(6): 064711, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778004

ABSTRACT

A novel trigger generator for operating a pseudospark switch has been developed based on a modified modular multilevel converter topology using insulated gate bipolar transistors. The trigger generator can be operated in either single- or high-repetition rate shot mode. It is characterized by a fast rise time and low temporal jitter between the output trigger pulses of less than 1 ns. It produces pulses of 4.5 kV and 1 µs duration into a 50 Ω load that can trigger a single pseudospark switch. By minimizing the high-voltage components, faster high-voltage switching takes place and the power density of the unit is increased. Furthermore, the overall volume of the trigger generator is reduced. Using this pseudospark trigger generator, it is possible to trigger single or multiple pseudospark gaps without the requirement to use a pulse shaping circuit.

4.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200030, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33040652

ABSTRACT

This work presents studies which demonstrate the importance of the very early heating dynamics of the ablator long before the ablation plasma phase begins in laser driven inertial confinement fusion (ICF) studies. For the direct-drive fusion concept using lasers, the development of perturbations during the thermo-elasto-plastic (TEP) and melting phases of the interaction of the laser pulse with the ablator's surface may act as seeding to the subsequent growth of hydro-dynamic instabilities apparent during the acceleration phase of the interaction such as for instance the Rayleigh-Taylor and the Richtmyer-Meshkov, which strongly affect the implosion dynamics of the compression phase. The multiphysics-multiphase finite-element method (FEM) simulation results are experimentally validated by advanced three-dimensional whole-field dynamic imaging of the surface of the ablator allowing for a transverse to the surface spatial resolution of only approximately 1 nm. The study shows that the TEP and melting phases of the interaction are of crucial importance since transverse perturbations of the ablator's surface can reach tens of nanometres in amplitude within the TEP and melting phases. Such perturbations are of Rayleigh type and are transferred from the ablator to the substrate from the very first moments of the interaction. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

5.
Nat Commun ; 8(1): 1713, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170379

ABSTRACT

The study of plasma instabilities is a research topic with fundamental importance since for the majority of plasma applications they are unwanted and there is always the need for their suppression. The initiating physical processes that seed the generation of plasma instabilities are not well understood in all plasma geometries and initial states of matter. For most plasma instability studies, using linear or even nonlinear magnetohydrodynamics (MHD) theory, the most crucial step is to correctly choose the initial perturbations imposed either by a predefined perturbation, usually sinusoidal, or by randomly seed perturbations as initial conditions. Here, we demonstrate that the efficient study of the seeding mechanisms of plasma instabilities requires the incorporation of the intrinsic real physical characteristics of the solid target in an electro-thermo-mechanical multiphysics study. The present proof-of-principle study offers a perspective to the understanding of the seeding physical mechanisms in the generation of plasma instabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...