Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 36(2): 79-94, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36324054

ABSTRACT

During parasitism, root-knot nematode Meloidogyne spp. inject molecules termed effectors that have multifunctional roles in construction and maintenance of nematode feeding sites. As an outcome of transcriptomic analysis of Meloidogyne javanica, we identified and characterized two differentially expressed genes encoding the predicted proteins MjShKT, carrying a Stichodactyla toxin (ShKT) domain, and MjPUT3, carrying a ground-like domain, both expressed during nematode parasitism of the tomato plant. Fluorescence in-situ hybridization revealed expression of MjShKT and MjPUT3 in the dorsal esophageal glands, suggesting their injection into host cells. MjShKT expression was upregulated during the parasitic life stages, to a maximum at the mature female stage, whereas MjPUT3 expression increased in third- to fourth-stage juveniles. Subcellular in-planta localization of MjShKT and MjPUT3 using a fused fluorescence marker indicated MjShKT co-occurrence with the endoplasmic reticulum, the perinuclear endoplasmatic reticulum, and the Golgi organelle markers, while MjPUT3 localized, to some extent, within the endoplasmatic reticulum and was clearly observed within the nucleoplasm. MjShKT inhibited programmed cell death induced by overexpression of MAPKKKα and Gpa2/RBP-1. Overexpression of MjShKT in tomato hairy roots allowed an increase in nematode reproduction, as indicated by the high number of eggs produced on roots overexpressing MjShKT. Roots overexpressing MjPUT3 were characterized by enhanced root growth, with no effect on nematode development on those roots. Investigation of the two candidate effectors suggested that MjShKT is mainly involved in manipulating the plant effector-triggered immune response toward establishment and maintenance of active feeding sites, whereas MjPUT3 might modulate roots morphology in favor of nematode fitness in the host roots. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Parasites , Tylenchoidea , Animals , Tylenchoidea/physiology , Parasites/genetics , Apoptosis , Gene Expression Profiling , Cell Nucleus/metabolism , Plant Roots/parasitology , Plant Diseases
2.
Sci Rep ; 12(1): 9196, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654810

ABSTRACT

Root-knot nematodes Meloidogyne spp. induce enlarged multinucleate feeding cells-galls-in host plant roots. Although core cell-cycle components in galls follow a conserved track, they can also be usurped and manipulated by nematodes. We identified a candidate effector in Meloidogyne javanica that is directly involved in cell-cycle manipulation-Minichromosome Maintenance Complex Component 2 (MCM2), part of MCM complex licensing factor involved in DNA replication. MjMCM2, which is induced by plant oxilipin 9-HOT, was expressed in nematode esophageal glands, upregulated during parasitic stages, and was localized to plant cell nucleus and plasma membrane. Infected tomato hairy roots overexpressing MjMCM2 showed significantly more galls and egg-mass-producing females than wild-type roots, and feeding cells showed more nuclei. Phylogenetic analysis suggested seven homologues of MjMCM2 with unknown association to parasitism. Sequence mining revealed two RxLR-like motifs followed by SEED domains in all Meloidogyne spp. MCM2 protein sequences. The unique second RxLR-like motif was absent in other Tylenchida species. Molecular homology modeling of MjMCM2 suggested that second RxLR2-like domain is positioned on a surface loop structure, supporting its function in polar interactions. Our findings reveal a first candidate cell-cycle gene effector in M. javanica-MjMCM2-that is likely secreted into plant host to mimic function of endogenous MCM2.


Subject(s)
Tylenchoidea , Animals , Cell Division , Minichromosome Maintenance Complex Component 2/genetics , Phylogeny , Plant Diseases/parasitology , Plant Roots/genetics , Tylenchoidea/genetics
3.
Front Plant Sci ; 12: 670772, 2021.
Article in English | MEDLINE | ID: mdl-34512679

ABSTRACT

The role of the 9-lipoxygenase (9-LOX)-derived oxylipins in plant defense is mainly known in solanaceous plants. In this work, we identify the functional role of the tomato divinyl ether synthase (LeDES) branch, which exclusively converts 9-hydroperoxides to the 9-divinyl ethers (DVEs) colneleic acid (CA) and colnelenic acid (CnA), during infection by the root-knot nematode Meloidogyne javanica. Analysis of LeDES expression in roots indicated a concurrent response to nematode infection, demonstrating a sharp increase in expression during the molting of third/fourth-stage juveniles, 15 days after inoculation. Spatiotemporal expression analysis using an LeDES promoter:GUS tomato line showed high GUS activity associated with the developing gall; however the GUS signal became more constricted as infection progressed to the mature nematode feeding sites, and eventually disappeared. Wounding did not activate the LeDES promoter, but auxins and methyl salicylate triggered LeDES expression, indicating a hormone-mediated function of DVEs. Heterologous expression of LeDES in Arabidopsis thaliana rendered the plants more resistant to nematode infection and resulted in a significant reduction in third/fourth-stage juveniles and adult females as compared to a vector control and the wild type. To further evaluate the nematotoxic activity of the DVEs CA and CnA, recombinant yeast that catalyzes the formation of CA and CnA from 9-hydroperoxides was generated. Transgenic yeast accumulating CnA was tested for its impact on M. javanica juveniles, indicating a decrease in second-stage juvenile motility. Taken together, our results suggest an important role for LeDES as a determinant in the defense response during M. javanica parasitism, and indicate two functional modes: directly via DVE motility inhibition effect and through signal molecule-mediated defense reactions to nematodes that depend on methyl salicylate.

4.
Sci Rep ; 11(1): 326, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431951

ABSTRACT

Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.


Subject(s)
Cell Communication , Host-Parasite Interactions , Oxylipins/metabolism , Signal Transduction , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Tylenchoidea/physiology , Animals , Solanum lycopersicum/cytology
5.
Plant Signal Behav ; 14(6): 1601951, 2019.
Article in English | MEDLINE | ID: mdl-31010365

ABSTRACT

Diseases caused by plant-parasitic nematodes in vegetables, among them Meloidogyne spp. root-knot nematodes (RKNs), lead to extensive yield decline. A molecular understanding of the mechanisms underlying plants' innate resistance may enable developing safe alternatives to harmful chemical nematicides in controlling RKNs. A tight relationship has been revealed between the WRKY transcription factors and RKN parasitism on tomato roots. We investigated the function role of tomato SlWRK3 and SlWRKY35 in regulating nematode disease development. Using promoter-GUS reporter gene fusions, we show that both SlWRKY3 and SlWRKY35 are induced within 5 days of infection and through feeding-site development and gall maturation, with a much stronger response of the former vs. the latter to nematode infection. Histological analysis of nematode-feeding sites indicated a high expression of SlWRKY3 in developing and mature feeding cells and associated vasculature cells, whereas SlWRKY35 expression was only observed in mature feeding sites. Both SlWRKY3 and SlWRKY35 promoters were induced by the defense phytohormones salicylic acid and indole-3-butyric acid, with no response to either jasmonic acid or methyl jasmonate. SlWRKY3 overexpression resulted in lower infection of the RKN Meloidogyne javanica, whereas knocking down SlWRKY3 resulted in increased infection. Phytohormone and oxylipin profiles determined by LC-MS/MS showed that the enhanced resistance in the former is coupled with an increased accumulation of defense molecules from the shikimate and oxylipin pathways. Our results pinpoint SlWRKY3 as a positive regulator of induced resistance in response to nematode invasion and infection, mostly during the early stages of nematode infection.


Subject(s)
Disease Resistance , Lipids/chemistry , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/immunology , Solanum lycopersicum/parasitology , Tylenchoidea/physiology , Animals , Biosynthetic Pathways/drug effects , Feeding Behavior , Gene Expression Regulation, Plant/drug effects , Indoles/pharmacology , Solanum lycopersicum/drug effects , Solanum lycopersicum/genetics , Oxylipins/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/parasitology , Promoter Regions, Genetic/genetics , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...