Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296312

ABSTRACT

Oil palm empty fruit bunch (OPEFB) is the largest biomass waste from the palm oil industry. The OPEFB has a lignocellulose content of 34.77% cellulose, 22.55% hemicellulose, and 10.58% lignin. Therefore, this material's hemicellulose and cellulose content have a high potential for xylitol and ethanol production, respectively. This study investigated the integrated microaerobic xylitol production by Debaryomyces hansenii and anaerobic ethanol semi simultaneous saccharification and fermentation (semi-SSF) by Saccharomyces cerevisiae using the same OPEFB material. A maximum xylitol concentration of 2.86 g/L was obtained with a yield of 0.297 g/gxylose. After 96 h of anaerobic fermentation, the maximum ethanol concentration was 6.48 g/L, corresponding to 71.38% of the theoretical ethanol yield. Significant morphological changes occurred in the OPEFB after hydrolysis and xylitol and ethanol fermentation were shown from SEM analysis.

2.
Bioelectrochemistry ; 145: 108102, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338862

ABSTRACT

CO2 can be a next generation feedstock for electricity-driven bioproduction due to its abundance and availability. Microbial electrosynthesis (MES), a promising technique for CO2 electroconversion, provides an attractive route for the production of valuable products from CO2, but issues surrounding efficiency and reasonable productivity should be resolved. Improving the anode performance for water oxidation under neutral pH is one of the most important aspects to advance current MES. Here, we introduce cobalt-phosphate (Co-Pi) assisted water oxidation at the counter electrode (i.e., anode) to upgrade the MES performance at pH 7.0. We show that CO2 can be converted by photochemoautotrophic bacterium, Rhodobacter sphaeroides into organic acids and carotenoids in the MES reactor. Planktonic cells of R. sphareroides in the Co-Pi anode equipped MES reactor was ca. 1.5-fold higher than in the control condition (w/o Co-Pi). The faradaic efficiency of the Co-Pi anode equipped MES reactor was remarkably higher (58.3%) than that of the bare anode (27.8%). While the system can improve the CO2 electroconversion nonetheless there are some further optimizations are necessary.


Subject(s)
Rhodobacter sphaeroides , Carbon Dioxide , Cobalt , Electrodes , Phosphates , Water
3.
Bioresour Technol ; 320(Pt A): 124350, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33186841

ABSTRACT

The electrochemical conversion of CO2 can include renewable surplus electricity storage and CO2 utilisation. This review focuses on the microbial CO2 electrobiorefinery based on microbial electrosynthesis (MES) which merges electrochemical and microbial conversion to produce biofuels and higher-value chemicals. In this review, recent developments are discussed about bioelectrochemical conversion of CO2 into biofuels and chemicals in MES via microbial CO2-fixation and electricity utilisation reactions. In addition, this review examines technical approaches to overcome the current limitations of MES including the following: engineering of the biocathode, application of electron mediators, and reactor optimisation, among others. An in-depth discussion of strategies for the CO2 electrobiorefinery is presented, including the integration of the biocathode with inorganic catalysts, screening of novel electroactive microorganisms, and metabolic engineering to improve target productivity from CO2.


Subject(s)
Carbon Dioxide , Electricity , Biofuels , Catalysis , Electrodes , Metabolic Engineering
4.
Bioprocess Biosyst Eng ; 43(6): 1119-1122, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32002611

ABSTRACT

While the hydrogen economy is receiving growing attention, research on microbial hydrogen production is also increasing. Microbial water-gas shift reaction is advantageous as it produces hydrogen from by product gas including carbon monoxide (CO). However, CO solubility in water is the bottleneck of this process by low mass transfer. Thermococcus onnurineus NA1 strain can endure a high-pressure environment and can enhance hydrogen production in a pressurized reactor by increasing CO solubility. As CO causes cell toxicity, two important factors, pressure and input gas flow rate, should be considered for process control during cultivation. Hence, we employed different operational strategies for enhancing hydrogen production and obtained 577 mmol/L/h of hydrogen productivity. This is the highest hydrogen productivity reported to date from microbial water-gas shift reaction.


Subject(s)
Carbon Monoxide/metabolism , Hydrogen/metabolism , Thermococcus/growth & development , Pressure
5.
Bioresour Technol ; 207: 175-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26881335

ABSTRACT

Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable.


Subject(s)
Arecaceae/metabolism , Batch Cell Culture Techniques/methods , Cellulase/metabolism , Fruit/metabolism , Cellulose/analysis , Hydrolysis , Lignin/analysis , Polysaccharides/analysis , Steam
SELECTION OF CITATIONS
SEARCH DETAIL
...