Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pediatr Surg ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38461108

ABSTRACT

BACKGROUND: Patient-specific 3D models of neuroblastoma and relevant anatomy are useful tools for surgical planning. However, these models do not represent the heterogenous biology of neuroblastoma. This heterogeneity is visualized with the ADC and 123I-MIGB-SPECT-CT imaging. Combining these multi-modal data into preoperative 3D heatmaps, may allow differentiation of the areas of vital and non-vital tumor tissue. We developed a workflow to create multi-modal preoperative 3D models for neuroblastoma surgery. METHODS: We included 7 patients who underwent neuroblastoma surgery between 2022 and 2023. We developed 3D models based on the contrast enhanced T1-weighted MRI scans. Subsequently, we aligned the corresponding ADC and 123I-MIBG-SPECT-CT images using rigid transformation. We estimated registration precision using the Dice score and the target registration error (TRE). 3D heatmaps were computed based on ADC and 123I-MIBG uptake. RESULTS: The registration algorithm had a median Dice score of 0.81 (0.75-0.90) for ADC and 0.77 (0.65-0.91) for 123I-MIBG-SPECT. For the ADC registration, the median TRE of renal vessels was 4.90 mm (0.86-10.18) and of the aorta 4.67 mm (1.59-12.20). For the 123I -MIBG-SPECT imaging the TRE of the renal vessels was 5.52 mm (1.71-10.97) and 5.28 mm (3.33-16.77) for the aorta. CONCLUSIONS: We successfully developed a registration workflow to create multi-modal 3D models which allows the surgeon to visualize the tumor and its biological behavior in relation to the surrounding tissue. Future research will include linking of pathological results to imaging data, to validate these multi-modal 3D models. LEVEL OF EVIDENCE: Level IV. TYPE OF STUDY: Clinical Research.

2.
J Pediatr Surg ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38472040

ABSTRACT

BACKGROUND: Surgical treatment of pediatric chest wall tumors requires accurate surgical planning and tumor localization to achieve radical resections while sparing as much healthy tissue as possible. Augmented Reality (AR) could facilitate surgical decision making by improving anatomical understanding and intraoperative tumor localization. We present our clinical experience with the use of an AR system for intraoperative tumor localization during chest wall resections. Furthermore, we present the pre-clinical results of a new registration method to improve our conventional AR system. METHODS: From January 2021, we used the HoloLens 2 for pre-incisional tumor localization during all chest wall resections inside our center. A patient-specific 3D model was projected onto the patient by use of a five-point registration method based on anatomical landmarks. Furthermore, we developed and pre-clinically tested a surface matching method to allow post-incisional AR guidance by performing registration on the exposed surface of the ribs. RESULTS: Successful registration and holographic overlay were achieved in eight patients. The projection seemed most accurate when landmarks were positioned in a non-symmetric configuration in proximity to the tumor. Disagreements between the overlay and expected tumor location were mainly due to user-dependent registration errors. The pre-clinical tests of the surface matching method proved the feasibility of registration on the exposed ribs. CONCLUSIONS: Our results prove the applicability of AR guidance for the pre- and post-incisional localization of pediatric chest wall tumors during surgery. The system has the potential to enable intraoperative 3D visualization, hereby facilitating surgical planning and management of chest wall resections. LEVEL OF EVIDENCE: IV TYPE OF STUDY: Treatment Study.

3.
Cancers (Basel) ; 15(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37046776

ABSTRACT

Wilms tumor is a common pediatric solid tumor. To evaluate tumor response to chemotherapy and decide whether nephron-sparing surgery is possible, tumor volume measurements based on magnetic resonance imaging (MRI) are important. Currently, radiological volume measurements are based on measuring tumor dimensions in three directions. Manual segmentation-based volume measurements might be more accurate, but this process is time-consuming and user-dependent. The aim of this study was to investigate whether manual segmentation-based volume measurements are more accurate and to explore whether these segmentations can be automated using deep learning. We included the MRI images of 45 Wilms tumor patients (age 0-18 years). First, we compared radiological tumor volumes with manual segmentation-based tumor volume measurements. Next, we created an automated segmentation method by training a nnU-Net in a five-fold cross-validation. Segmentation quality was validated by comparing the automated segmentation with the manually created ground truth segmentations, using Dice scores and the 95th percentile of the Hausdorff distances (HD95). On average, manual tumor segmentations result in larger tumor volumes. For automated segmentation, the median dice was 0.90. The median HD95 was 7.2 mm. We showed that radiological volume measurements underestimated tumor volume by about 10% when compared to manual segmentation-based volume measurements. Deep learning can potentially be used to replace manual segmentation to benefit from accurate volume measurements without time and observer constraints.

4.
Pediatr Radiol ; 53(2): 235-243, 2023 02.
Article in English | MEDLINE | ID: mdl-36040524

ABSTRACT

BACKGROUND: Pediatric renal tumors are often heterogeneous lesions with variable regions of distinct histopathology. Direct comparison between in vivo imaging and ex vivo histopathology might be useful for identification of discriminating imaging features. OBJECTIVE: This feasibility study explored the use of a patient-specific three-dimensional (3D)-printed cutting guide to ensure correct alignment (orientation and slice thickness) between magnetic resonance imaging (MRI) and histopathology. MATERIALS AND METHODS: Before total nephrectomy, a patient-specific cutting guide based on each patient's preoperative renal MRI was generated and 3-D printed, to enable consistent transverse orientation of the histological specimen slices with MRI slices. This was expected to result in macroscopic slices of 5 mm each. The feasibility of the technique was determined qualitatively, through questionnaires administered to involved experts, and quantitatively, based on structured measurements including overlap calculation using the dice similarity coefficient. RESULTS: The cutting guide was used in eight Wilms tumor patients receiving a total nephrectomy, after preoperative chemotherapy. The median age at diagnosis was 50 months (range: 4-100 months). The positioning and slicing of the specimens were rated overall as easy and the median macroscopic slice thickness of each specimen ranged from 5 to 6 mm. Tumor consistency strongly influenced the practical application of the cutting guide. Digital correlation of a total of 32 slices resulted in a median dice similarity coefficient of 0.912 (range: 0.530-0.960). CONCLUSION: We report the feasibility of a patient-specific 3-D-printed MRI-based cutting guide for pediatric renal tumors, allowing improvement of the correlation of MRI and histopathology in future studies.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Child , Humans , Infant , Child, Preschool , Feasibility Studies , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Magnetic Resonance Imaging , Wilms Tumor/diagnostic imaging , Wilms Tumor/surgery , Wilms Tumor/pathology , Printing, Three-Dimensional
6.
Curr Oncol ; 29(2): 777-784, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35200565

ABSTRACT

Nephron-sparing surgery (NSS) in Wilms tumor (WT) patients is a surgically challenging procedure used in highly selective cases only. Virtual resections can be used for preoperative planning of NSS to estimate the remnant renal volume (RRV) and to virtually mimic radical tumor resection. In this single-center evaluation study, virtual resection for NSS planning and the user experience were evaluated. Virtual resection was performed in nine WT patient cases by two pediatric surgeons and one pediatric urologist. Pre- and postoperative MRI scans were used for 3D visualization. The virtual RRV was acquired after performing virtual resection and a questionnaire was used to assess the ease of use. The actual RRV was derived from the postoperative 3D visualization and compared with the derived virtual RRV. Virtual resection resulted in virtual RRVs that matched nearly perfectly with the actual RRVs. According to the questionnaire, virtual resection appeared to be straightforward and was not considered to be difficult. This study demonstrated the potential of virtual resection as a new planning tool to estimate the RRV after NSS in WT patients. Future research should further evaluate the clinical relevance of virtual resection by relating it to surgical outcome.


Subject(s)
Kidney Neoplasms , Surgeons , Wilms Tumor , Child , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Nephrectomy/methods , Nephrons/pathology , Nephrons/surgery , Wilms Tumor/pathology , Wilms Tumor/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...