Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Brain Res ; 194: 97-103, 2011.
Article in English | MEDLINE | ID: mdl-21867797

ABSTRACT

The Göttingen minipig has been established as a translational research animal for neurological and neurosurgical disorders. This animal has a large gyrencephalic brain suited for examination at sufficient resolution with conventional clinical scanning modalities. The large brain, further, allows use of standard neurosurgical techniques and can accommodate clinical neuromodulatory devises such as deep brain stimulation (DBS) electrodes and encapsulated cell biodelivery devices making the animal ideal for basic scientific studies on neuromodulation mechanisms and preclinical tests of new neuromodulation technology for human use. The use of the Göttingen minipig is economical and does not have the concerns of the public associated with the experimental use of primates, cats, and dogs, thus providing a cost-effective research model for translation of rodent data before clinical trials are initiated.


Subject(s)
Brain/physiology , Deep Brain Stimulation/methods , Electrodes, Implanted , Models, Animal , Swine, Miniature , Animals , Brain/anatomy & histology , Deep Brain Stimulation/economics , Deep Brain Stimulation/instrumentation , Humans , Nervous System Diseases/therapy , Neurosurgical Procedures , Stem Cell Transplantation , Swine , Translational Research, Biomedical
2.
Ultramicroscopy ; 106(11-12): 1053-61, 2006.
Article in English | MEDLINE | ID: mdl-16867311

ABSTRACT

A screw dislocation network at the low-angle SrTiO3/Nb:SrTiO3 twist grain boundary has been analyzed by annular dark field (ADF) imaging and spatially resolved electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). The cores of one set of dislocations running parallel to the beam direction appear dark in the ADF STEM images. EELS on the dislocation core reveals a reduced Sr/Ti ratio compared to the bulk suggesting Sr-deficient cores. The second set of dislocations, orthogonal to the latter, is imaged by its strain field using low-angle annular dark field (LAADF) imaging. Multislice image simulations suggest channeling of the electron probe on the atomic columns for small tilts, theta < 1 degree, where the Sr columns act as beam guides. Only for larger tilts is the channeling effect strongly reduced and the fringe contrast approaches the value predicted by a purely incoherent imaging model. Ti-L(2,3) EELS across the dislocation core shows an asymmetry between the EELS and the ADF signal which cannot be explained by the geometry or beam broadening. This asymmetry might be explained by an effective nonlocal potential representing inelastic scattering in EELS.

SELECTION OF CITATIONS
SEARCH DETAIL
...