Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Amino Acids ; 44(2): 725-32, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22968664

ABSTRACT

We report a highly enantioselective oligomerization of isoleucine stereomers in the salt-induced peptide formation reaction under plausibly prebiotic earth conditions. Up to 6.5-fold superiority in reactivity of L-isoleucine was observed, compared to its D-enantiomer, after 14 evaporation cycles in the presence of Cu(2+) and NaCl. Since isoleucine is among the proteinogenic amino acids that were found enantioenriched in meteorites, this present work may further correlate the extraterrestrial delivery and endogenous production of biological homochirality by virtue of a protein constituent rather than the rarely occurring α-methylated amino acids.


Subject(s)
Isoleucine/chemistry , Extraterrestrial Environment , Meteoroids , Models, Molecular , Stereoisomerism
2.
J Mol Model ; 17(12): 3117-28, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21360187

ABSTRACT

Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni(2+), Cu(2+) and Zn(2+) with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies and Gibbs energies of nine complexes Phe•M, Tyr•M, Trp•M, (M = Ni(2+), Cu(2+) and Zn(2+)) were determined at the Becke3LYP density functional level of theory. Of the transition metals studied the bivalent copper cation forms the strongest complexes with AAAs. For Ni(2+)and Cu(2+) the most stable species are the NO coordinated cations in the AAA metal complexes, Zn(2+)cation prefers a binding to the aromatic part of the AAA (complex II). Some complexes energetically unfavored in the gas-phase are stabilized upon microsolvation.


Subject(s)
Chemistry, Organic , Models, Molecular , Molecular Conformation/drug effects , Cations/chemistry , Copper/chemistry , Copper/pharmacology , Gases/chemistry , Nickel/chemistry , Nickel/pharmacology , Phenylalanine/chemistry , Quantum Theory , Thermodynamics , Tryptophan/chemistry , Tyrosine/chemistry , Water/chemistry , Zinc/chemistry , Zinc/pharmacology
3.
Phys Chem Chem Phys ; 13(3): 831-8, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21031170

ABSTRACT

Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH(3)Cl ions forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. n-Propyl NH(3)Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligomerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.


Subject(s)
Aluminum Silicates/chemistry , Amino Acids/chemistry , Adsorption , Alanine/chemistry , Ammonium Chloride/chemistry , Chromatography, High Pressure Liquid , Gels/chemistry , Histidine/chemistry , Lysine/chemistry , Stereoisomerism
4.
Amino Acids ; 39(5): 1309-19, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20364281

ABSTRACT

Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m=0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral L-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of L-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to L-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from -130 to -1,300 kJ/mol), and upon hydration are appreciably lowered.


Subject(s)
Histidine/chemistry , Metals/chemistry , Water/chemistry , Ions/chemistry , Molecular Conformation , Molecular Dynamics Simulation , Molecular Structure , Stereoisomerism , Thermodynamics
5.
Amino Acids ; 39(2): 579-85, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20099003

ABSTRACT

The salt-induced peptide formation reaction has been proposed as a conceivable preliminary to the prebiotic evolution of peptides. In the present paper, the behaviour of arginine is reported for this reaction together with a discussion of the catalytic effects of glycine, and L- and D-histidine. Importantly, the behaviour of the two histidine enantiomers is different. Both histidine enantiomers perform better than glycine in enhancing the yields of arginine dipeptide with L-histidine being more effective than D-histidine. Yields in the presence of histidine are up to 70 times greater than for arginine solutions alone. This compares with 4.2 times higher in the presence of glycine. This difference is most pronounced in the most concentrated (containing 80 mM arginine) reaction solution where arginine has the lowest reactivity. A distinct preference for dimerisation of L-arginine also appears in the 80 mM cases for catalyses of other amino acids. This phenomenon is different from the behaviour of aliphatic amino acids, which display obvious inherent enantioselectivity for the L-stereomers in the SIPF reaction on their own rather than when catalysed by glycine or histidine.


Subject(s)
Arginine/chemistry , Evolution, Chemical , Glycine/chemistry , Histidine/chemistry , Oligopeptides/chemical synthesis , Sodium Chloride/pharmacology , Catalysis , Solutions , Stereoisomerism
6.
Amino Acids ; 38(1): 287-94, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19214703

ABSTRACT

The salt-induced peptide formation (SIPF) reaction takes place readily under mild reaction conditions and proceeds via a copper complex. Its ease of reaction and the universality for prebiotic scenarios add weights to the arguments in favour of the importance of peptide and proteins in the tug of war with the RNA world hypothesis. In addition, the SIPF reaction has a preference for L-form amino acids in dipeptide formation, casting light on the puzzle of biohomochirality, especially for the amino acids with aliphatic side chains. A detailed investigation on the behaviour of aliphatic leucine in the SIPF reaction is presented in this paper, including the catalytic effects of glycine, L- and D-histidine as well as the stereoselectivity under all the reaction conditions above. The results show a relatively low reactivity and stereoselectivity of leucine in the SIPF reaction, while both glycine and histidine enantiomers remarkably increase the yields of dileucine by factors up to 40. Moreover, a comparative study of the effectiveness of L- and D-histidine in catalysing the formation of dimethionine was also carried out and extends the scope of mutual catalysis by amino acid enantiomers in the SIPF reaction.


Subject(s)
Glycine/chemistry , Histidine/chemistry , Leucine/chemistry , Methionine/chemistry , Peptides/chemistry , Sodium Chloride/chemistry , Catalysis , Dimerization , Stereoisomerism
7.
J Inorg Biochem ; 102(12): 2097-102, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18760483

ABSTRACT

A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.


Subject(s)
Alanine/chemistry , Dipeptides/chemical synthesis , Evolution, Chemical , Histidine/chemistry , Lysine/chemistry , Catalysis
8.
J Phys Chem A ; 112(33): 7652-61, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18652440

ABSTRACT

Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.


Subject(s)
Arginine/chemistry , Metals/chemistry , Water/chemistry , Cations/chemistry , Computer Simulation , Entropy , Gases/chemistry , Models, Molecular , Proteins/chemistry , Protons
9.
J Inorg Biochem ; 102(5-6): 1212-7, 2008.
Article in English | MEDLINE | ID: mdl-18262274

ABSTRACT

According to recent research on the origin of life it seems more and more likely that amino acids and peptides were among the first biomolecules formed on earth and that a peptide/protein world was thus a key starting point in evolution towards life. Salt-induced Peptide Formation (SIPF) has repeatedly been shown to be the most universal and plausible peptide-forming reaction currently known under prebiotic conditions and forms peptides from amino acids with the help of copper ions and sodium chloride. In this paper we present experimental results for salt-induced peptide formation from methionine. This is the first time that a sulphur-containing amino acid was investigated in this reaction. The possible catalytic effects of glycine and L-histidine in this reaction were also investigated and a possible distinction between the L- and D-forms of methionine was studied as well.


Subject(s)
Dipeptides/chemical synthesis , Evolution, Chemical , Methionine/chemistry , Earth, Planet , Glycine/chemistry , Histidine/chemistry , Stereoisomerism
11.
Chem Biodivers ; 3(6): 611-21, 2006 Jun.
Article in English | MEDLINE | ID: mdl-17193295

ABSTRACT

One of the most unsettled problems of prebiotic evolution and the origin of life is the explanation why one enantiomeric form of biomolecules prevailed. In the experiments presented in this paper, the influence of L-histidine on the peptide formation in the Salt-Induced Peptide Formation (SIPF) reaction of the enantiomeric forms of valine, proline, serine, lysine, and tryptophan, and the catalytic effects in this first step toward the first building blocks of proteins on the primordial earth were investigated. In the majority of the produced dipeptides, a remarkable increase of yields was shown, and the preference of the L-amino acids in the peptide formation in most cases cannot be denied. In summary, our data provide further experimental evidence for the plausibility of the SIPF reaction and point at a possible important role of L-histidine in the chemical evolution on the primordial Earth.


Subject(s)
Earth, Planet , Evolution, Chemical , Histidine/chemistry , Peptides/chemistry , Catalysis , Computational Biology , Models, Molecular , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...