Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 62(6): 680-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22788106

ABSTRACT

2,2,4-trimethyl, 1,3-pentanediol monoisobutyrate (TPM) is a widely used solvent found in water-based coatings. Ambient measurements of TPM are reported here for the first time. Although this compound has been previously measured in indoor air, this study illustrates successful detection and quantification of TPM in ambient air at three locations in Southern California: Pico Rivera, Azusa, and Riverside. TPM was detected in every sample collected, with concentrations ranging from 0.7 to 49.5 parts per trillion (ppt). Collections took place during summer 2009, fall 2009, winter 2009/2010, and spring 2010, for 5-7 days during each season. The highest mean concentrations were observed during the summer months for each city, when coating activities are typically at their highest.


Subject(s)
Air Pollutants/chemistry , Glycols/chemistry , Air Pollution , California , Solvents/chemistry
2.
J Air Waste Manag Assoc ; 55(10): 1418-30, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16295266

ABSTRACT

Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.


Subject(s)
Environment , Environmental Exposure , Transportation , Air Pollutants, Occupational/analysis , California , Carbon/analysis , Child , Humans , Nitrogen Dioxide/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Schools
3.
J Expo Anal Environ Epidemiol ; 15(5): 377-87, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15592444

ABSTRACT

Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure , Vehicle Emissions/analysis , Child , Child Welfare , Environmental Monitoring , Fossil Fuels , Humans , Los Angeles , Motor Vehicles , Rural Population , Students , Urban Population
4.
J Air Waste Manag Assoc ; 53(8): 937-45, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12943313

ABSTRACT

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling has required active sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Dairying , Environmental Monitoring/instrumentation , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...