Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628730

ABSTRACT

We have previously demonstrated that circulating extracellular vesicles (EVs) are essential to the beneficial effect of young serum on the skeletal muscle regenerative cascade. Here, we show that infusions of young serum significantly improve age-associated memory deficits, and that these effects are abolished after serum depletion of EVs. RNA-seq analysis of the choroid plexus demonstrates EV-mediated effects on genes involved in barrier function and trans-barrier transport. Comparing the differentially expressed genes to recently published chronological aging clock genes reveals a reversal of transcriptomic aging in the choroid plexus. Following young serum treatment, the hippocampal transcriptome demonstrates significant upregulation of the anti-aging gene Klotho, along with an abrogated effect after EV depletion. Transcriptomic profiling of Klotho knockout and heterozygous mice shows the downregulation of genes associated with transport, exocytosis, and lipid transport, while upregulated genes are associated with activated microglia. The results of our study indicate the significance of EVs as vehicles to deliver signals from the periphery to the brain and the importance of Klotho in maintaining brain homeostasis.


Subject(s)
Extracellular Vesicles , Transcriptome , Animals , Mice , Brain , Cognition , Gene Expression Profiling , Extracellular Vesicles/genetics
2.
Front Neurosci ; 17: 1195724, 2023.
Article in English | MEDLINE | ID: mdl-37274212

ABSTRACT

The inheritance of Apolipoprotein E4 (APOEε4) brings the highest genetic risk of Alzheimer's disease (AD), arguably the highest genetic risk in human pathology. Since the discovery of the association, APOE protein isoforms have been at the center of tens of thousands of studies and reports. While, without a doubt, our knowledge about the normal physiological function of APOE isoforms in the brain has increased tremendously, the questions of how the inheritance of the APOEε4 allele translates into a risk of AD, and the risk is materialized, remain unanswered. Moreover, the knowledge about the risk associated with APOEε4 has not helped design a meaningful preventative or therapeutic strategy. Animal models with targeted replacement of Apoe have been generated and, thanks to the recent NIH/NIA/Alzheimer's disease Association initiative, are now freely available to AD researchers. While helpful in many aspects, none of the available models recapitulates normal physiological transcriptional regulation of the human APOE gene cluster. Changes in epigenetic regulation of APOE alleles in animal models in response to external insults have rarely been if ever, addressed. However, these animal models provide a useful tool to handle questions and investigate protein-protein interactions with proteins expressed by other recently discovered genes and gene variants considered genetic risk factors of AD, like Triggering Receptor expressed on Myeloid cells 2 (TREM2). In this review, we discuss genetic and epigenetic regulatory mechanisms controlling and influencing APOE expression and focus on interactions of APOE and TREM2 in the context of microglia and astrocytes' role in AD-like pathology in animal models.

3.
Toxicol Rep ; 9: 393-403, 2022.
Article in English | MEDLINE | ID: mdl-35299870

ABSTRACT

Inorganic arsenic is a xenobiotic entering the body primarily through contaminated drinking water and food. There are defined mechanisms that describe arsenic's association with increased cancer incidence, however mechanisms explaining arsenic exposure and neurodevelopmental or aging disorders are poorly defined. In recent years, arsenic effects on epigenome have become a particular focus. We hypothesize that human relevant arsenic exposure during particular developmental windows, or long-term exposure later in life induce pathophysiological neural changes through epigenomic alterations, in particular histone methylation profile, manifesting as cognitive decline. C57BL/6 wild-type mice were continually exposed to sodium arsenite (100 µg/L) in drinking water prior to mating through weaning of the experimental progeny. A second cohort of aged APP/PS mice were chronically exposed to the same level of arsenic. Cognitive testing, histological examination of brains and genome-wide methylation levels of H3K4me3 and H3K27me3 examined after ChIP-seq were used to determine the effects of arsenic exposure. Developmental arsenic exposure caused significantly diminished cognition in wild-type mice. The analysis of ChIP-seq data and experiments with mouse embryonic stem cells demonstrated that epigenetic changes induced by arsenic exposure translated into gene expression alterations associated with neuronal development and neurological disease. Increased hippocampal amyloid plaques levels of APP/PS mice and cognitive decline provided evidence that arsenic exposure aggravated an existing Alzheimer's disease-like phenotype. We show developmental arsenic exposure significantly impacts histone modifications in brain which remain present into adulthood and provide a potential mechanism by which developmental arsenic exposure influences cognitive functions. We also show that human relevant, chronic arsenic exposure has deleterious effects on adult APP/PS mice and exacerbates existing Alzheimer's disease-like symptoms. The results demonstrate how developmental arsenic exposure impacts the brain epigenome, leading to altered gene expression later in life.

4.
Neurobiol Dis ; 159: 105481, 2021 11.
Article in English | MEDLINE | ID: mdl-34411703

ABSTRACT

The clinical diagnosis of Alzheimer's disease, at its early stage, remains a difficult task. Advanced imaging technologies and laboratory assays to detect Aß peptides Aß42 and Aß40, total and phosphorylated tau in CSF provide a set of biomarkers of developing AD brain pathology and facilitate the diagnostic process. The search for biofluid biomarkers, other than in CSF, and the development of biomarker assays have accelerated significantly and now represent the fastest-growing field in AD research. The goal of this study was to determine the differential enrichment of noncoding RNAs (ncRNAs) in plasma-derived extracellular vesicles (EV) of AD patients and Cognitively Normal controls (NC). Using RNA-seq, we profiled four significant classes of ncRNAs: miRNAs, snoRNAs, tRNAs, and piRNAs. We report a significant enrichment of SNORDs - a group of snoRNAs, in AD samples compared to NC. To verify the differential enrichment of two clusters of SNORDs - SNORD115 and SNORD116, localized on human chromosome 15q11-q13, we used plasma samples of an independent group of AD patients and NC. We applied ddPCR technique and identified SNORD115 and SNORD116 with a high discriminatory power to differentiate AD samples from NC. The results of our study present evidence that AD is associated with changes in the enrichment of SNORDs, transcribed from imprinted genomic loci, in plasma EV and provide a rationale to further explore the validity of those SNORDs as plasma biomarkers of AD.


Subject(s)
Alzheimer Disease/metabolism , Extracellular Vesicles/metabolism , RNA, Small Nucleolar/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Male , Sensitivity and Specificity
5.
Nat Commun ; 12(1): 3416, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099706

ABSTRACT

APOE and Trem2 are major genetic risk factors for Alzheimer's disease (AD), but how they affect microglia response to Aß remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human APOEε3/3 and APOEε4/4 AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aß, facilitate Aß uptake, and ameliorate Aß effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aß uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aß mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.


Subject(s)
Alzheimer Disease/pathology , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Brain/pathology , Microglia/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein E3/administration & dosage , Apolipoprotein E3/genetics , Apolipoprotein E4/administration & dosage , Apolipoprotein E4/genetics , Brain/cytology , Disease Models, Animal , Female , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Mutation , Phospholipids/metabolism , Presenilin-1/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
6.
Nat Aging ; 1(12): 1148-1161, 2021 12.
Article in English | MEDLINE | ID: mdl-35665306

ABSTRACT

Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show here that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity and compromises downstream benefits on recipient cells. Machine learning classifiers revealed that aging shifts the nucleic acid, but not protein, fingerprint of circulating EVs. Alterations in sub-population heterogeneity were accompanied by declines in transcript levels of the pro-longevity protein, α-Klotho, and injection of EVs improved muscle regeneration in a Klotho mRNA-dependent manner. These studies demonstrate that EVs play a key role in the rejuvenating effects of HBE and that Klotho transcripts within EVs phenocopy the effects of young serum on aged skeletal muscle.


Subject(s)
Aging , Extracellular Vesicles , Animals , Aging/physiology , Muscle, Skeletal/metabolism , Extracellular Vesicles/metabolism , Regeneration/genetics
7.
Mol Neurodegener ; 15(1): 41, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703241

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is a neurodegenerative disorder influenced by aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction that can modulate AD pathology. METHODS: The aim of this study was to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial response, and brain transcriptome. RESULTS: In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased plaque growth that negatively correlated to the diminished microglia barrier, an effect most pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates. Gene expression analysis identified Trem2 signature - a cluster of highly connected immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes including APP and WT littermates. Furthermore, we identified sets of genes that were affected in TREM2- and APOE isoform-dependent manner. Among them were Clec7a and Csf1r upregulated in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level in APP/E3 versus their APP/E4 counterparts. CONCLUSIONS: Our data demonstrate that lack of Trem2 differentially impacts the phenotype and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably reflect the different effect of APOE isoforms on amyloid deposition.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Membrane Glycoproteins/deficiency , Receptors, Immunologic/deficiency , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/pathology
8.
Br J Pharmacol ; 176(18): 3599-3610, 2019 09.
Article in English | MEDLINE | ID: mdl-30924124

ABSTRACT

After 15 years of research into Alzheimer's disease (AD) therapeutics, including billions of US dollars provided by federal agencies, pharmaceutical companies, and private foundations, there are still no meaningful therapies that can delay the onset or slow the progression of AD. An understanding of the proteolytic processing of amyloid precursor protein (APP) and the hypothesis that pathogenic mechanisms in familial and sporadic forms of AD are very similar led to the assumption that pharmacological inhibition of secretases or immunological approaches to clear amyloid depositions in the brain would have been the core to drug discovery strategies and successful therapies. However, there are other understudied approaches including targeting genes, gene networks, and metabolic pathways outside the proteolytic processing of APP. The advancement of newly developed sequencing technologies and mass spectrometry, as well as the availability of animal models expressing human apolipoprotein E isoforms, has been critical in rationalizing additional AD therapeutics. The purpose of this review is to present one of those approaches, based on the role of ligand-activated nuclear liver X and retinoid X receptors in the brain. This therapeutic approach was initially proposed utilizing in vitro models 15 years ago and has since been examined in numerous studies using AD-like mouse models. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Subject(s)
Alzheimer Disease/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Humans
9.
Alzheimers Res Ther ; 11(1): 113, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888770

ABSTRACT

BACKGROUND: The application of advanced sequencing technologies and improved mass-spectrometry platforms revealed significant changes in gene expression and lipids in Alzheimer's disease (AD) brain. The results so far have prompted further research using "multi-omics" approaches. These approaches become particularly relevant, considering the inheritance of APOEε4 allele as a major genetic risk factor of AD, disease protective effect of APOEε2 allele, and a major role of APOE in brain lipid metabolism. METHODS: Postmortem brain samples from inferior parietal lobule genotyped as APOEε2/c (APOEε2/carriers), APOEε3/3, and APOEε4/c (APOEε4/carriers), age- and gender-matched, were used to reveal APOE allele-associated changes in transcriptomes and lipidomes. Differential gene expression and co-expression network analyses were applied to identify up- and downregulated Gene Ontology (GO) terms and pathways for correlation to lipidomics data. RESULTS: Significantly affected GO terms and pathways were determined based on the comparisons of APOEε2/c datasets to those of APOEε3/3 and APOEε4/c brain samples. The analysis of lists of genes in highly correlated network modules and of those differentially expressed demonstrated significant enrichment in GO terms associated with genes involved in intracellular proteasomal and lysosomal degradation of proteins, protein aggregates and organelles, ER stress, and response to unfolded protein, as well as mitochondrial function, electron transport, and ATP synthesis. Small nucleolar RNA coding units important for posttranscriptional modification of mRNA and therefore translation and protein synthesis were upregulated in APOEε2/c brain samples compared to both APOEε3/3 and APOEε4/c. The analysis of lipidomics datasets revealed significant changes in ten major lipid classes (exclusively a decrease in APOEε4/c samples), most notably non-bilayer-forming phosphatidylethanolamine and phosphatidic acid, as well as mitochondrial membrane-forming lipids. CONCLUSIONS: The results of this study, despite the advanced stage of AD, point to the significant differences in postmortem brain transcriptomes and lipidomes, suggesting APOE allele associated differences in pathogenic mechanisms. Correlations within and between lipidomes and transcriptomes indicate coordinated effects of changes in the proteasomal system and autophagy-canonical and selective, facilitating intracellular degradation, protein entry into ER, response to ER stress, nucleolar modifications of mRNA, and likely myelination in APOEε2/c brains. Additional research and a better knowledge of the molecular mechanisms of proteostasis in the early stages of AD are required to develop more effective diagnostic approaches and eventually efficient therapeutic strategies.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Brain/metabolism , Transcriptome , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apolipoprotein E2/metabolism , Brain/pathology , Female , Humans , Lipidomics , Male
10.
Int J Mol Sci ; 20(1)2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30587772

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide. The extracellular deposits of Amyloid beta (Aß) in the brain-called amyloid plaques, and neurofibrillary tangles-intracellular tau aggregates, are morphological hallmarks of the disease. The risk for AD is a complicated interplay between aging, genetic risk factors, and environmental influences. One of the Apolipoprotein E (APOE) alleles-APOEε4, is the major genetic risk factor for late-onset AD (LOAD). APOE is the primary cholesterol carrier in the brain, and plays an essential role in lipid trafficking, cholesterol homeostasis, and synaptic stability. Recent genome-wide association studies (GWAS) have identified other candidate LOAD risk loci, as well. One of those is the triggering receptor expressed on myeloid cells 2 (TREM2), which, in the brain, is expressed primarily by microglia. While the function of TREM2 is not fully understood, it promotes microglia survival, proliferation, and phagocytosis, making it important for cell viability and normal immune functions in the brain. Emerging evidence from protein binding assays suggests that APOE binds to TREM2 and APOE-containing lipoproteins in the brain as well as periphery, and are putative ligands for TREM2, thus raising the possibility of an APOE-TREM2 interaction modulating different aspects of AD pathology, potentially in an isoform-specific manner. This review is focusing on the interplay between APOE isoforms and TREM2 in association with AD pathology.


Subject(s)
Alzheimer Disease/pathology , Apolipoproteins E/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Alzheimer Disease/genetics , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Central Nervous System/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Microglia/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Risk Factors
11.
Acta Neuropathol Commun ; 6(1): 69, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30049279

ABSTRACT

Expression of human Apolipoprotein E (APOE) modulates the inflammatory response in an isoform specific manner, with APOE4 isoform eliciting a stronger pro-inflammatory response, suggesting a possible mechanism for worse outcome following traumatic brain injury (TBI). APOE lipidation and stability is modulated by ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein that transports lipids and cholesterol onto APOE. We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi followed by genome-wide differential gene expression analysis. We found that TBI significantly impacted unique transcripts within each group, however, the proportion of unique transcripts was highest in E4/Abca1+/- mice. Additionally, we found that Abca1 haplodeficiency increased the expression of microglia sensome genes among only APOE4 injured mice, a response not seen in injured APOE3 mice, nor in either group of sham-treated mice. To identify gene networks, or modules, correlated to TBI, APOE isoform and Abca1 haplodeficiency, we used weighted gene co-expression network analysis (WGCNA). The module that positively correlated to TBI groups was associated with immune response and featured hub genes that were microglia-specific, including Trem2, Tyrobp, Cd68 and Hexb. The modules positively correlated with APOE4 isoform and negatively to Abca1 haplodeficient mice represented "protein translation" and "oxidation-reduction process", respectively. Our results reveal E4/Abca1+/- TBI mice have a distinct response to injury, and unique gene networks are associated with APOE isoform, Abca1 insufficiency and injury.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Apolipoproteins E/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Brain/metabolism , Gene Expression Regulation/genetics , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoproteins E/genetics , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Gene Regulatory Networks , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 152-161, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29038051

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that is influenced by genetic and environmental risk factors, such as inheritance of ε4 allele of APOE (APOE4), sex and diet. Here, we examined the effect of high fat diet (HFD) on amyloid pathology and expression profile in brains of AD model mice expressing human APOE isoforms (APP/E3 and APP/E4 mice). APP/E3 and APP/E4 mice were fed HFD or Normal diet for 3months. We found that HFD significantly increased amyloid plaques in male and female APP/E4, but not in APP/E3 mice. To identify differentially expressed genes and gene-networks correlated to diet, APOE isoform and sex, we performed RNA sequencing and applied Weighted Gene Co-expression Network Analysis. We determined that the immune response network with major hubs Tyrobp/DAP12, Csf1r, Tlr2, C1qc and Laptm5 correlated significantly and positively to the phenotype of female APP/E4-HFD mice. Correspondingly, we found that in female APP/E4-HFD mice, microglia coverage around plaques, particularly of larger size, was significantly reduced. This suggests altered containment of the plaque growth and sex-dependent vulnerability in response to diet. The results of our study show concurrent impact of diet, APOE isoform and sex on the brain transcriptome and AD-like phenotype.


Subject(s)
Apolipoproteins E/genetics , Diet , Immunity, Innate/physiology , Plaque, Amyloid/immunology , Plaque, Amyloid/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Gene Regulatory Networks , Gene-Environment Interaction , Genotype , Immunity, Innate/genetics , Male , Mice , Mice, Transgenic , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Sex Factors , Systems Biology/methods
13.
Sci Rep ; 7(1): 4307, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28655926

ABSTRACT

We examined the effect of chronic high fat diet (HFD) on amyloid deposition and cognition of 12-months old APP23 mice, and correlated the phenotype to brain transcriptome and lipidome. HFD significantly increased amyloid plaques and worsened cognitive performance compared to mice on normal diet (ND). RNA-seq results revealed that in HFD mice there was an increased expression of genes related to immune response, such as Trem2 and Tyrobp. We found a significant increase of TREM2 immunoreactivity in the cortex in response to HFD, most pronounced in female mice that correlated to the amyloid pathology. Down-regulated by HFD were genes related to neuron projections and synaptic transmission in agreement to the significantly deteriorated neurite morphology and cognition in these mice. To examine the effect of the diet on the brain lipidome, we performed Shotgun Lipidomics. While there was no difference in the total amounts of phospholipids of each class, we revealed that the levels of 24 lipid sub-species in the brain were significantly modulated by HFD. Network visualization of correlated lipids demonstrated overall imbalance with most prominent effect on cardiolipin molecular sub-species. This integrative approach demonstrates that HFD elicits a complex response at molecular, cellular and system levels in the CNS.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Brain/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism , Metabolome , Phenotype , Transcriptome , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Animals , Apoptosis , Brain/pathology , Cell Differentiation/genetics , Cognition , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Maze Learning , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurons/cytology , Neurons/metabolism , Plaque, Amyloid/pathology , Protein Aggregation, Pathological
14.
Neurobiol Dis ; 105: 1-14, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28502803

ABSTRACT

Traumatic brain injury (TBI) is strongly linked to an increased risk of developing dementia, including chronic traumatic encephalopathy and possibly Alzheimer's disease (AD). APOEε4 allele of human Apolipoprotein E (APOE) gene is the major genetic risk factor for late onset AD and has been associated with chronic traumatic encephalopathy and unfavorable outcome following TBI. To determine if there is an APOE isoform-specific response to TBI we performed controlled cortical impact on 3-month-old mice expressing human APOE3 or APOE4 isoforms. Following injury, we used several behavior paradigms to test for anxiety and learning and found that APOE3 and APOE4 targeted replacement mice demonstrate cognitive impairments following moderate TBI. Transcriptional profiling 14days following injury revealed a significant effect of TBI, which was similar in both genotypes. Significantly upregulated by injury in both genotypes were mRNA expression and protein level of ABCA1 transporter and APOJ, but not APOE. To identify gene-networks correlated to injury and APOE isoform, we performed Weighted Gene Co-expression Network Analysis. We determined that the network mostly correlated to TBI in animals expressing both isoforms is immune response with major hub genes including Trem2, Tyrobp, Clec7a and Cd68. We also found a significant increase of TREM2, IBA-1 and GFAP protein levels in the brains of injured mice. We identified a network representing myelination that correlated significantly with APOE isoform in both injury groups. This network was significantly enriched in oligodendrocyte signature genes, such as Mbp and Plp1. Our results demonstrate unique and distinct gene networks at this acute time point for injury and APOE isoform, as well as a network driven by APOE isoform across TBI groups.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apolipoproteins E/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/physiopathology , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Up-Regulation/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Anxiety/etiology , Apolipoproteins E/genetics , Astrocytes/metabolism , Astrocytes/pathology , Brain Injuries, Traumatic/complications , Cognition Disorders/etiology , Cognition Disorders/genetics , Disease Models, Animal , Gene Regulatory Networks , Glial Fibrillary Acidic Protein/metabolism , Humans , Maze Learning/physiology , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Principal Component Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Receptors, Immunologic/genetics
15.
PLoS One ; 12(2): e0172161, 2017.
Article in English | MEDLINE | ID: mdl-28241068

ABSTRACT

ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors (LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased Aß deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human APOE isoforms, increased level of Aß oligomers and worsened memory deficits, preferentially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly ameliorated pathological phenotype of those mice. The goal of this study was to examine the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological phenotype and significantly affected brain transcriptome. We show that in mice expressing either APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, the application of LXR agonist significantly increased ABCA1 protein level accompanied by an increased APOE lipidation, and was associated with restoration of APOE4 cognitive deficits, reduced levels of Aß oligomers, but unchanged amyloid load. Finally, using Gene set enrichment analysis we show a significant APOE isoform specific response to LXR agonist treatment: Gene Ontology categories "Microtubule Based Process" and "Synapse Organization" were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 ameliorates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers of APOEε4.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Liver X Receptors/agonists , Transcriptome , Amyloid beta-Peptides/metabolism , Animals , Behavior, Animal , Brain/metabolism , Cluster Analysis , Fear , Female , Haploinsufficiency , Heterozygote , Humans , Male , Maze Learning , Memory Disorders/metabolism , Mice , Mice, Transgenic , Microtubules/metabolism , Phenotype , Software , Up-Regulation
16.
J Alzheimers Dis ; 56(3): 1075-1085, 2017.
Article in English | MEDLINE | ID: mdl-28106559

ABSTRACT

ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoproteins and regulates the generation of high density lipoproteins. Previously, we have shown that lack of Abca1 significantly increases amyloid deposition and cognitive deficits in Alzheimer's disease model mice expressing human amyloid-ß protein precursor (APP). The goal of this study was to determine if ABCA1 plays a role in memory deficits caused by amyloid-ß (Aß) oligomers and examine neurite architecture of pyramidal hippocampal neurons. Our results confirm previous findings that Abca1 deficiency significantly impairs spatial memory acquisition and retention in the Morris water maze and long-term memory in novel object recognition of APP transgenic mice at a stage of early amyloid pathology. Neither test demonstrated a significant difference between Abca1ko and wild-type (WT) mice. We also examined the effect of intra-hippocampal infused Aß oligomers on cognitive performance of Abca1ko mice, compared to control infusion of scrambled Aß peptide. Age-matched WT mice undergoing the same infusions were also used as controls. In this model system, we found a statistically significant difference between WT and Abca1ko mice infused with scrambled Aß, suggesting that Abca1ko mice are vulnerable to the effect of mild stresses. Moreover, examination of neurite architecture in the hippocampi revealed a significant decrease in neurite length, number of neurite segments, and branches in Abca1ko mice when compared to WT mice. We conclude that mice lacking ABCA1 have basal cognitive deficits that prevent them from coping with additional stressors, which is in part due to impairment of neurite morphology in the hippocampus.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Cognition Disorders/metabolism , Cognition Disorders/pathology , Dendrites/metabolism , Dendrites/pathology , ATP Binding Cassette Transporter 1/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Size , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Recognition, Psychology/physiology , Spatial Memory/physiology
17.
Sci Rep ; 6: 24048, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27051978

ABSTRACT

Bexarotene, a selective agonist for Retinoid X receptors (RXR) improves cognitive deficits and amyloid-ß (Aß) clearance in mice. Here we examine if the effect of bexarotene on RXR cistrome and transcriptomes depend on APOE isoform and Aß deposition. We found bexarotene increased RXR binding to promoter regions in cortex of APOE3 mice. Rho family GTPases and Wnt signaling pathway were highly enriched in ChIP-seq and RNA-seq datasets and members of those pathways - Lrp1, Lrp5, Sfrp5 and Sema3f were validated. The effect of APOE isoform was compared in APOE3 and APOE4 mice and we found significant overlapping in affected pathways. ChIP-seq using mouse embryonic stem cells and enrichment levels of histone marks H3K4me3 and H3K27me3 revealed that, bexarotene induced epigenetic changes, consistent with increased neuronal differentiation and in correlation with changes in transcription. Comparison of transcriptome in APOE3 and APP/APOE3 mice revealed that amyloid deposition significantly affects the response to bexarotene. In primary neurons, bexarotene ameliorated the damaged dendrite complexity and loss of neurites caused by Aß42. Finally, we show that the disruption of actin cytoskeleton induced by Aß42 in vitro was inhibited by bexarotene treatment. Our results suggest a mechanism to establish RXR therapeutic targets with significance in neurodegeneration.


Subject(s)
Amyloid beta-Peptides/toxicity , Brain/metabolism , Gene Regulatory Networks , Protein Multimerization , Retinoid X Receptors/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Apolipoprotein E3/metabolism , Axon Guidance/drug effects , Bexarotene , Brain/drug effects , Cell Differentiation/drug effects , Chromatin Immunoprecipitation , Epigenesis, Genetic/drug effects , Gene Regulatory Networks/drug effects , Genome , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Neurites/drug effects , Neurites/metabolism , Protein Binding/drug effects , Protein Multimerization/drug effects , Tetrahydronaphthalenes/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
18.
Mol Cell Proteomics ; 15(7): 2252-62, 2016 07.
Article in English | MEDLINE | ID: mdl-27103636

ABSTRACT

It has been hypothesized that Alzheimer disease (AD) is primarily a disorder of the synapse. However, assessment of the synaptic proteome in AD subjects has been limited to a small number of proteins and often included subjects with end-stage pathology. Protein from prefrontal cortex gray matter of 59 AD subjects with mild to moderate dementia and 12 normal elderly subjects was assayed using targeted mass spectrometry to quantify 191 synaptically expressed proteins. The profile of synaptic protein expression clustered AD subjects into two groups. One of these was characterized by reduced expression of glutamate receptor proteins, significantly increased synaptic protein network coexpression, and associated withApolipoprotein E*4 (APOE*4) carrier status. The second group, by contrast, showed few differences from control subjects. A subset of AD subjects had altered prefrontal cortex synaptic proteostasis for glutamate receptors and their signaling partners. Efforts to therapeutically target glutamate receptors in AD may have outcomes dependent on APOE*4 genotype.


Subject(s)
Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Glutamic Acid/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Down-Regulation , Female , Humans , Male , Mass Spectrometry , Middle Aged , Proteomics/methods , Receptors, Glutamate/metabolism , Signal Transduction
19.
Brain ; 138(Pt 12): 3699-715, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26510953

ABSTRACT

UNLABELLED: ATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1(ko)), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the ε4 allele of APOE is the major genetic risk factor for late-onset Alzheimer's disease, ABCA1 role as a modifier of APOE lipidation is of significance for this disease. Reportedly, Abca1 deficiency in mice expressing human APP accelerates amyloid deposition and behaviour deficits. We used APP/PS1dE9 mice crossed to Apoe and Apoa1 knockout mice to generate Apoe/Apoa1 double-knockout mice. We hypothesized that Apoe/Apoa1 double-knockout mice would mimic the phenotype of APP/Abca1(ko) mice in regards to amyloid plaques and cognitive deficits. Amyloid pathology, peripheral lipoprotein metabolism, cognitive deficits and dendritic morphology of Apoe/Apoa1 double-knockout mice were compared to APP/Abca1(ko), APP/PS1dE9, and single Apoa1 and Apoe knockouts. Contrary to our prediction, the results demonstrate that double deletion of Apoe and Apoa1 ameliorated the amyloid pathology, including amyloid plaques and soluble amyloid. In double knockout mice we show that (125)I-amyloid-ß microinjected into the central nervous system cleared at a rate twice faster compared to Abca1 knockout mice. We tested the effect of Apoe, Apoa1 or Abca1 deficiency on spreading of exogenous amyloid-ß seeds injected into the brain of young pre-depositing APP mice. The results show that lack of Abca1 augments dissemination of exogenous amyloid significantly more than the lack of Apoe. In the periphery, Apoe/Apoa1 double-knockout mice exhibited substantial atherosclerosis and very high levels of low density lipoproteins compared to APP/PS1dE9 and APP/Abca1(ko). Plasma level of amyloid-ß42 measured at several time points for each mouse was significantly higher in Apoe/Apoa1 double-knockout then in APP/Abca1(ko) mice. This result demonstrates that mice with the lowest level of plasma lipoproteins, APP/Abca1(ko), have the lowest level of peripheral amyloid-ß. Unexpectedly, and independent of amyloid pathology, the deletion of both apolipoproteins worsened behaviour deficits of double knockout mice and their performance was undistinguishable from those of Abca1 knockout mice. Finally we observed that the dendritic complexity in the CA1 region of hippocampus but not in CA2 is significantly impaired by Apoe/Apoa1 double deletion as well as by lack of ABCA1. IN CONCLUSION: (i) plasma lipoproteins may affect amyloid-ß clearance from the brain by the 'peripheral sink' mechanism; and (ii) deficiency of brain APOE-containing lipoproteins is of significance for dendritic complexity and cognition.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Apolipoprotein A-I/deficiency , Apolipoproteins E/deficiency , Cognition Disorders/genetics , Cognition Disorders/psychology , Gene Deletion , Plaque, Amyloid/genetics , ATP Binding Cassette Transporter 1/genetics , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacokinetics , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoproteins E/genetics , Brain/metabolism , Brain/pathology , Cognition Disorders/pathology , Female , Hippocampus/metabolism , Lipoproteins/blood , Male , Mice , Mice, Knockout , Microinjections , Neurites/pathology , Peptide Fragments/administration & dosage , Peptide Fragments/blood , Peptide Fragments/metabolism , Peptide Fragments/pharmacokinetics , Plaque, Amyloid/pathology , Plaque, Amyloid/psychology
20.
J Neurosci ; 35(34): 11862-76, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311769

ABSTRACT

Bexarotene-activated retinoid X receptors (RXRs) ameliorate memory deficits in Alzheimer's disease mouse models, including mice expressing human apolipoprotein E (APOE) isoforms. The goal of this study was to gain further insight into molecular mechanisms whereby ligand-activated RXR can affect or restore cognitive functions. We used an unbiased approach to discover genome-wide changes in RXR cistrome (ChIP-Seq) and gene expression profile (RNA-Seq) in response to bexarotene in the cortex of APOE4 mice. Functional categories enriched in both datasets revealed that bexarotene-liganded RXR affected signaling pathways associated with neurogenesis and neuron projection development. To further validate the significance of RXR for these functions, we used mouse embryonic stem (ES) cells, primary neurons, and APOE3 and APOE4 mice treated with bexarotene. In vitro data from ES cells confirmed that bexarotene-activated RXR affected neuronal development at different levels, including proliferation of neural progenitors and neuronal differentiation, and stimulated neurite outgrowth. This effect was validated in vivo by demonstrating an increased number of neuronal progenitors after bexarotene treatment in the dentate gyrus of APOE3 and APOE4 mice. In primary neurons, bexarotene enhanced the dendritic complexity characterized by increased branching, intersections, and bifurcations. This effect was confirmed by in vivo studies demonstrating that bexarotene significantly improved the compromised dendritic structure in the hippocampus of APOE4 mice. We conclude that bexarotene-activated RXRs promote genetic programs involved in the neurogenesis and development of neuronal projections and these results have significance for the improvement of cognitive deficits. SIGNIFICANCE STATEMENT: Bexarotene-activated retinoid X receptors (RXRs) ameliorate memory deficits in Alzheimer's disease mouse models, including mice expressing human apolipoprotein E (APOE) isoforms. The goal of this study was to gain further insight into molecular mechanisms whereby ligand-activated RXR can affect or restore cognitive functions. We used an unbiased approach to discover genome-wide changes in RXR cistrome (ChIP-Seq) and gene expression profile (RNA-Seq) in response to bexarotene in the cortex of APOE4 mice. Functional categories enriched in both datasets revealed that liganded RXR affected signaling pathways associated with neurogenesis and neuron projection development. The significance of RXR for these functions was validated in mouse embryonic stem cells, primary neurons, and APOE3 and APOE4 mice treated with bexarotene.


Subject(s)
Cell Differentiation/physiology , Dendrites/metabolism , Neurogenesis/physiology , Retinoid X Receptors/metabolism , Tetrahydronaphthalenes/pharmacology , Animals , Bexarotene , Cell Differentiation/drug effects , Cells, Cultured , Dendrites/drug effects , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Retinoid X Receptors/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...