Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Methods Mol Biol ; 2442: 307-338, 2022.
Article in English | MEDLINE | ID: mdl-35320533

ABSTRACT

Dynamic changes of a cell's glycophenotype are increasingly interpreted as shifts in the capacity to interact with tissue (endogenous) lectins. The status of glycan branching or chain length (e.g., core 1 vs core 2 mucin-type O-glycans and polyLacNAc additions) as well as of sialylation/sulfation has been delineated to convey signals. They are "read" by galectins, for example regulating lattice formation on the membrane and cell growth. Owing to the discovery of the possibility that these effectors act in networks physiologically resulting in functional antagonism or cooperation, their detection and distribution profiling need to be expanded from an individual (single) protein to the-at best-entire family. How to work with non-cross-reactive antibodies and with the labeled tissue-derived proteins (used as probes) is exemplarily documented for chicken and human galectins including typical activity and specificity controls. This description intends to inspire the systematic (network) study of members of a lectin family and also the application of tissue proteins beyond a single lectin category in lectin histochemistry.


Subject(s)
Galectins , Polysaccharides , Animals , Chickens , Galectins/metabolism , Humans , Microscopy, Fluorescence , Polysaccharides/metabolism
2.
Histochem Cell Biol ; 156(3): 253-272, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34152508

ABSTRACT

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Subject(s)
Galectins/metabolism , Protein Engineering , Cell Line, Tumor , Galectins/analysis , Galectins/isolation & purification , Humans , Mass Spectrometry
3.
Biochemistry ; 60(7): 547-558, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33560106

ABSTRACT

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 µM for monoglycosylated peptides to 0.6 µM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.


Subject(s)
Lectins, C-Type/chemistry , Mucin-1/chemistry , Amino Acid Sequence , Antigens, Tumor-Associated, Carbohydrate/chemistry , Antigens, Tumor-Associated, Carbohydrate/metabolism , Calorimetry/methods , Epitopes/metabolism , Galactose , Glycopeptides/chemistry , Glycopeptides/metabolism , Glycosylation , Humans , Lectins, C-Type/metabolism , Macrophages/metabolism , Mucin-1/metabolism , Protein Binding
4.
Chemistry ; 27(1): 316-325, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32955737

ABSTRACT

Functional pairing between cellular glycoconjugates and tissue lectins like galectins has wide (patho)physiological significance. Their study is facilitated by nonhydrolysable derivatives of the natural O-glycans, such as S- and Se-glycosides. The latter enable extensive analyses by specific 77 Se NMR spectroscopy, but still remain underexplored. By using the example of selenodigalactoside (SeDG) and the human galectin-1 and -3, we have evaluated diverse 77 Se NMR detection methods and propose selective 1 H,77 Se heteronuclear Hartmann-Hahn transfer for efficient use in competitive NMR screening against a selenoglycoside spy ligand. By fluorescence anisotropy, circular dichroism, and isothermal titration calorimetry (ITC), we show that the affinity and thermodynamics of SeDG binding by galectins are similar to thiodigalactoside (TDG) and N-acetyllactosamine (LacNAc), confirming that Se substitution has no major impact. ITC data in D2 O versus H2 O are similar for TDG and LacNAc binding by both galectins, but a solvent effect, indicating solvent rearrangement at the binding site, is hinted at for SeDG and clearly observed for LacNAc dimers with extended chain length.


Subject(s)
Galectins , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides , Binding Sites , Deuterium Oxide , Galectins/metabolism , Humans , Isotopes , Ligands , Polysaccharides/metabolism , Protein Binding , Selenium , Solvents
5.
Glycoconj J ; 37(6): 657-666, 2020 12.
Article in English | MEDLINE | ID: mdl-33001366

ABSTRACT

Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms. Immunohistochemical analyses have purported Gal-1 binding to TF on MUC1 at the cell surface, however binding at the molecular level was inconclusive. We hypothesize that glycan scaffold (MUC1's tandem repeat peptide sequence) and/or multivalency play a role in the binding recognition of TF antigen by Gal-1. In this study we have developed a method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen for Gal-1 inhibitors. Surprisingly, neither glycan scaffold or multivalent presentation of TF antigen on the scaffold was able to entice Gal-1 recognition to the level of affinity expected for functional significance. Future evaluations of the Gal-1/TF binding interaction in order to draw connections between immunohistochemical data and analytical measurements are warranted.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/immunology , Galectin 1/genetics , Mucin-1/genetics , Antigens, Tumor-Associated, Carbohydrate/genetics , Blood Proteins/genetics , Blood Proteins/immunology , Galectin 1/immunology , Galectins/genetics , Galectins/immunology , Glycopeptides/genetics , Glycopeptides/immunology , Humans , Mucin-1/immunology , Protein Binding/genetics , Protein Binding/immunology
6.
ACS Comb Sci ; 22(1): 25-34, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31829554

ABSTRACT

DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.


Subject(s)
Drug Discovery/methods , Small Molecule Libraries , Staining and Labeling , Binding, Competitive , Combinatorial Chemistry Techniques , DNA , Fluorescence Polarization , Ligands , Proof of Concept Study
7.
Glycobiology ; 29(8): 593-607, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31091305

ABSTRACT

Discoveries on involvement of glycan-protein recognition in many (patho)physiological processes are directing attention to exploring the significance of a fundamental structural aspect of sugar receptors beyond glycan specificity, i.e., occurrence of distinct types of modular architecture. In order to trace clues for defining design-functionality relationships in human lectins, a lectin's structural unit has been used as source material for engineering custom-made variants of the wild-type protein. Their availability facilitates comparative analysis toward the stated aim. With adhesion/growth-regulatory human galectin-1 as example, the strategy of evaluating how changes of its design (here, from the homodimer of non-covalently associated domains to (i) linker-connected di- and tetramers and (ii) a galectin-3-like protein) affect activity is illustrated by using three assay systems of increasing degree of glycan complexity. Whereas calorimetry with two cognate disaccharides and array testing with 647 (glyco)compounds disclosed no major changes, galectin histochemical staining profiles of tissue sections that present natural glycome complexity revealed differences between wild-type and linker-connected homo-oligomers as well as between the galectin-3-like variant and wild-type galectin-3 for cell-type positivity, level of intensity at the same site and susceptibility for inhibition by a bivalent glycocompound. These results underscore the strength of the documented approach. Moreover, they give direction to proceed to (i) extending its application to other members of this lectin family, especially galectin-3 and (ii) then analyzing impact of architectural alterations on cell surface lattice formation and ensuing biosignaling systematically, considering the variants' potential for translational medicine.


Subject(s)
Galectin 1/metabolism , Protein Processing, Post-Translational , Amino Sugars/metabolism , Animals , Binding Sites , Epididymis/metabolism , Galectin 1/chemistry , Humans , Jejunum/metabolism , Lactose/analogs & derivatives , Lactose/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding , Protein Multimerization
8.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718416

ABSTRACT

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Subject(s)
Galectin 1/chemistry , Galectin 3/chemistry , Glycoconjugates/chemistry , Polysaccharides/chemistry , Amino Sugars/chemistry , Amino Sugars/metabolism , Binding Sites , Blood Proteins , Cell Adhesion/genetics , Cell Proliferation/genetics , Galectin 1/genetics , Galectin 3/genetics , Galectins , Humans , Lactose/chemistry , Ligands , Nanoparticles/chemistry , Polysaccharides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...