Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroscience ; 549: 24-41, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38484835

ABSTRACT

Accurate movements of the upper limb require the integration of various forms of sensory feedback (e.g., visual and postural information). The influence of these different sensory modalities on reaching movements has been largely studied by assessing endpoint errors after selectively perturbing sensory estimates of hand location. These studies have demonstrated that both vision and proprioception make key contributions in determining the reach endpoint. However, their influence on motor output throughout movement remains unclear. Here we used separate perturbations of posture and visual information to dissociate their effects on reaching dynamics and temporal force profiles during point-to-point reaching movements. We tested human subjects (N = 32) and found that vision and posture modulate select aspects of reaching dynamics. Specifically, altering arm posture influences the relationship between temporal force patterns and the motion-state variables of hand position and acceleration, whereas dissociating visual feedback influences the relationship between force patterns and the motion-state variables of velocity and acceleration. Next, we examined the extent these baseline motion-state relationships influence motor adaptation based on perturbations of movement dynamics. We trained subjects using a velocity-dependent force-field to probe the extent arm posture-dependent influences persisted after exposure to a motion-state dependent perturbation. Changes in the temporal force profiles due to variations in arm posture were not reduced by adaptation to novel movement dynamics, but persisted throughout learning. These results suggest that vision and posture differentially influence the internal estimation of limb state throughout movement and play distinct roles in forming the response to external perturbations during movement.


Subject(s)
Adaptation, Physiological , Feedback, Sensory , Movement , Posture , Psychomotor Performance , Humans , Male , Feedback, Sensory/physiology , Female , Movement/physiology , Posture/physiology , Adaptation, Physiological/physiology , Adult , Young Adult , Psychomotor Performance/physiology , Biomechanical Phenomena/physiology , Arm/physiology , Proprioception/physiology , Visual Perception/physiology
2.
J Neuroeng Rehabil ; 21(1): 13, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263225

ABSTRACT

Children with a unilateral congenital below elbow deficiency (UCBED) have one typical upper limb and one that lacks a hand, ending below the elbow at the proximal/mid forearm. UCBED is an isolated condition, and affected children otherwise develop normal sensorimotor control. Unlike adults with upper limb absence, the majority of whom have an acquired loss, children with UCBED never developed a hand, so their residual muscles have never actuated an intact limb. Their ability to purposefully modulate affected muscle activity is often assumed to be limited, and this assumption has influenced prosthetic design and prescription practices for this population as many modern devices derive control signals from affected muscle activity. To better understand the motor capabilities of the affected muscles, we used ultrasound imaging to study 6 children with UCBED. We examined the extent to which subjects activate their affected muscles when performing mirrored movements with their typical and missing hands. We demonstrate that all subjects could intentionally and consistently enact at least five distinct muscle patterns when attempting different missing hand movements (e.g., power grasp) and found similar performance across affected and typically developed limbs. These results suggest that although participants had never actuated the missing hand they could distinctively and consistently activate the residual muscle patterns associated with actions on the unaffected side. These findings indicate that motor control still develops in the absence of the normal effector, and can serve as a guide for developing prostheses that leverage the full extent of these children's motor control capabilities.


Subject(s)
Elbow Joint , Elbow , Adult , Child , Humans , Muscles , Upper Extremity , Hand
SELECTION OF CITATIONS
SEARCH DETAIL