Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Aging (Albany NY) ; 15(6): 1833-1839, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947707

ABSTRACT

Here we report on a case series of six women who completed a methylation-supportive diet and lifestyle program designed to impact DNA methylation and measures of biological aging. The intervention consisted of an 8-week program that included diet, sleep, exercise and relaxation guidance, supplemental probiotics and phytonutrients and nutritional coaching. DNA methylation and biological age analysis (Horvath DNAmAge clock (2013), normalized using the SeSAMe pipeline [a]) was conducted on blood samples at baseline and at the end of the 8-week period. Five of the six participants exhibited a biological age reduction of between 1.22 and 11.01 years from their baseline biological age. There was a statistically significant (p=.039) difference in the participants' mean biological age before (55.83 years) and after (51.23 years) the 8-week diet and lifestyle intervention, with an average decrease of 4.60 years. The average chronological age at the start of the program was 57.9 years and all but one participant had a biological age younger than their chronological age at the start of the program, suggesting that biological age changes were unrelated to disease improvement and instead might be attributed to underlying aging mechanisms.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Female , Aging/genetics , Life Style , Diet
4.
Aging (Albany NY) ; 13(7): 9419-9432, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33844651

ABSTRACT

Manipulations to slow biological aging and extend healthspan are of interest given the societal and healthcare costs of our aging population. Herein we report on a randomized controlled clinical trial conducted among 43 healthy adult males between the ages of 50-72. The 8-week treatment program included diet, sleep, exercise and relaxation guidance, and supplemental probiotics and phytonutrients. The control group received no intervention. Genome-wide DNA methylation analysis was conducted on saliva samples using the Illumina Methylation Epic Array and DNAmAge was calculated using the online Horvath DNAmAge clock (2013). The diet and lifestyle treatment was associated with a 3.23 years decrease in DNAmAge compared with controls (p=0.018). DNAmAge of those in the treatment group decreased by an average 1.96 years by the end of the program compared to the same individuals at the beginning with a strong trend towards significance (p=0.066). Changes in blood biomarkers were significant for mean serum 5-methyltetrahydrofolate (+15%, p=0.004) and mean triglycerides (-25%, p=0.009). To our knowledge, this is the first randomized controlled study to suggest that specific diet and lifestyle interventions may reverse Horvath DNAmAge (2013) epigenetic aging in healthy adult males. Larger-scale and longer duration clinical trials are needed to confirm these findings, as well as investigation in other human populations.


Subject(s)
Aging/genetics , DNA Methylation , Diet , Life Style , Aged , Healthy Aging/genetics , Humans , Male , Middle Aged , Pilot Projects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...