Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Cachexia Sarcopenia Muscle ; 15(2): 646-659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38333944

ABSTRACT

BACKGROUND: Accumulating evidence has demonstrated that chronic tobacco smoking directly contributes to skeletal muscle dysfunction independent of its pathological impact to the cardiorespiratory systems. The mechanisms underlying tobacco smoke toxicity in skeletal muscle are not fully resolved. In this study, the role of the aryl hydrocarbon receptor (AHR), a transcription factor known to be activated with tobacco smoke, was investigated. METHODS: AHR related gene (mRNA) expression was quantified in skeletal muscle from adult controls and patients with chronic obstructive pulmonary disease (COPD), as well as mice with and without cigarette smoke exposure. Utilizing both skeletal muscle-specific AHR knockout mice exposed to chronic repeated (5 days per week for 16 weeks) cigarette smoke and skeletal muscle-specific expression of a constitutively active mutant AHR in healthy mice, a battery of assessments interrogating muscle size, contractile function, mitochondrial energetics, and RNA sequencing were employed. RESULTS: Skeletal muscle from COPD patients (N = 79, age = 67.0 ± 8.4 years) had higher levels of AHR (P = 0.0451) and CYP1B1 (P < 0.0001) compared to healthy adult controls (N = 16, age = 66.5 ± 6.5 years). Mice exposed to cigarette smoke displayed higher expression of Ahr (P = 0.008), Cyp1b1 (P < 0.0001), and Cyp1a1 (P < 0.0001) in skeletal muscle compared to air controls. Cigarette smoke exposure was found to impair skeletal muscle mitochondrial oxidative phosphorylation by ~50% in littermate controls (Treatment effect, P < 0.001), which was attenuated by deletion of the AHR in muscle in male (P = 0.001), but not female, mice (P = 0.37), indicating there are sex-dependent pathological effects of smoking-induced AHR activation in skeletal muscle. Viral mediated expression of a constitutively active mutant AHR in the muscle of healthy mice recapitulated the effects of cigarette smoking by decreasing muscle mitochondrial oxidative phosphorylation by ~40% (P = 0.003). CONCLUSIONS: These findings provide evidence linking chronic AHR activation secondary to cigarette smoke exposure to skeletal muscle bioenergetic deficits in male, but not female, mice. AHR activation is a likely contributor to the decline in muscle oxidative capacity observed in smokers and AHR antagonism may provide a therapeutic avenue aimed to improve muscle function in COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tobacco Smoke Pollution , Aged , Animals , Humans , Male , Mice , Middle Aged , Mitochondria/metabolism , Muscle, Skeletal/pathology , Nicotiana , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Smoking/adverse effects , Tobacco Smoking , Female
2.
Appl Physiol Nutr Metab ; 49(2): 250-264, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37906958

ABSTRACT

Human skeletal muscle oxidative capacity can be quantified non-invasively using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to measure the rate constant of phosphocreatine (PCr) recovery (kPCr) following contractions. In the quadricep muscles, several studies have quantified kPCr following 24-30 s of sustained maximal voluntary isometric contraction (MVIC). This approach has the advantage of simplicity but is potentially problematic because sustained MVICs inhibit perfusion, which may limit muscle oxygen availability or increase the intracellular metabolic perturbation, and thus affect kPCr. Alternatively, dynamic contractions allow reperfusion between contractions, which may avoid limitations in oxygen delivery. To determine whether dynamic contraction protocols elicit greater kPCr than sustained MVIC protocols, we used a cross-sectional design to compare quadriceps kPCr in 22 young and 11 older healthy adults following 24 s of maximal voluntary: (1) sustained MVIC and (2) dynamic (MVDC; 120°·s-1, 1 every 2 s) contractions. Muscle kPCr was ∼20% lower following the MVIC protocol compared with the MVDC protocol (p ≤ 0.001), though this was less evident in older adults (p = 0.073). Changes in skeletal muscle pH (p ≤ 0.001) and PME accumulation (p ≤ 0.001) were greater following the sustained MVIC protocol, and pH (p ≤ 0.001) and PME (p ≤ 0.001) recovery were slower. These results demonstrate that (i) a brief, sustained MVIC yields a lower value for skeletal muscle oxidative capacity than an MVDC protocol of similar duration and (ii) this difference may not be consistent across populations (e.g., young vs. old). Thus, the potential effect of contraction protocol on comparisons of kPCr in different study groups requires careful consideration in the future.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Humans , Aged , Cross-Sectional Studies , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Oxidative Stress , Oxygen/metabolism , Muscle Contraction
3.
Physiol Rep ; 11(22): e15876, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37996974

ABSTRACT

We evaluated whether task-dependent, age-related differences in muscle fatigue (contraction-induced decline in normalized power) develop from differences in bioenergetics or metabolic economy (ME; mass-normalized work/mM ATP). We used magnetic resonance spectroscopy to quantify intracellular metabolites in vastus lateralis muscle of 10 young and 10 older adults during two maximal-effort, 4-min isotonic (20% maximal torque) and isokinetic (120°s-1 ) contraction protocols. Fatigue, inorganic phosphate (Pi), and pH (p ≥ 0.213) differed by age during isotonic contractions. However, older had less fatigue (p ≤ 0.011) and metabolic perturbation (lower [Pi], greater pH; p ≤ 0.031) than young during isokinetic contractions. ME was lower in older than young during isotonic contractions (p ≤ 0.003), but not associated with fatigue in either protocol or group. Rather, fatigue during both tasks was linearly related to changes in [H+ ], in both groups. The slope of fatigue versus [H+ ] was 50% lower in older than young during isokinetic contractions (p ≤ 0.023), consistent with less fatigue in older during this protocol. Overall, regardless of age or task type, acidosis, but not ME, was the primary mechanism for fatigue in vivo. The source of the age-related differences in contraction-induced acidosis in vivo remains to be determined, as does the apparent task-dependent difference in the sensitivity of muscle to [H+ ].


Subject(s)
Acidosis , Muscle Fatigue , Humans , Aged , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Aging/physiology , Isometric Contraction/physiology , Energy Metabolism/physiology , Torque , Muscle Contraction/physiology , Electromyography/methods
4.
J Sports Med Phys Fitness ; 63(3): 471-477, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36239290

ABSTRACT

BACKGROUND: Prior work from our group suggests that caffeine increases thrombotic potential after acute exercise. The aim of this study was to determine if hemostatic responses to exercise affected by caffeine are influenced by the CYP1A2-163 C>A polymorphism. METHODS: Forty-two healthy men performed two trials in which a graded maximal exercise test was completed one hour after consuming either 6 mg/kg of caffeine or placebo. Subjects were categorized as possessing the C allele (N.=21) or being homozygous for the A allele (N.=21). RESULTS: Factor VIII increased more (265%) during exercise in the caffeinated condition than the placebo condition (178%) (P<0.05). Tissue plasminogen activator (tPA) activity also increased more following caffeine as compared to placebo (increase of 8.70±4.32 IU/mL vs. 6.77±3.79 IU/mL respectively, P<0.05). There was no treatment × genotype or treatment × time × genotype interactions. CONCLUSIONS: Although caffeine increases factor VIII and tPA responses to maximal exercise, these changes are not influenced by the CYP1A2-163 C>A polymorphism.


Subject(s)
Caffeine , Hemostatics , Male , Humans , Tissue Plasminogen Activator , Factor VIII , Cytochrome P-450 CYP1A2/genetics , Exercise/physiology , Dietary Supplements
5.
Toxics ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35324765

ABSTRACT

Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency.

6.
J Cachexia Sarcopenia Muscle ; 13(1): 589-604, 2022 02.
Article in English | MEDLINE | ID: mdl-34725955

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) patients exhibit skeletal muscle atrophy, denervation, and reduced mitochondrial oxidative capacity. Whilst chronic tobacco smoke exposure is implicated in COPD muscle impairment, the mechanisms involved are ambiguous. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that activates detoxifying pathways with numerous exogenous ligands, including tobacco smoke. Whereas transient AHR activation is adaptive, chronic activation can be toxic. On this basis, we tested the hypothesis that chronic smoke-induced AHR activation causes adverse muscle impact. METHODS: We used clinical patient muscle samples, and in vitro (C2C12 myotubes) and in vivo models (mouse), to perform gene expression, mitochondrial function, muscle and neuromuscular junction morphology, and genetic manipulations (adeno-associated virus-mediated gene transfer). RESULTS: Sixteen weeks of tobacco smoke exposure in mice caused muscle atrophy, neuromuscular junction degeneration, and reduced oxidative capacity. Similarly, smoke exposure reprogrammed the muscle transcriptome, with down-regulation of mitochondrial and neuromuscular junction genes. In mouse and human patient specimens, smoke exposure increased muscle AHR signalling. Mechanistically, experiments in cultured myotubes demonstrated that smoke condensate activated the AHR, caused mitochondrial impairments, and induced an AHR-dependent myotube atrophy. Finally, to isolate the role of AHR activity, expression of a constitutively active AHR mutant without smoke exposure caused atrophy and mitochondrial impairments in cultured myotubes, and muscle atrophy and neuromuscular junction degeneration in mice. CONCLUSIONS: These results establish that chronic AHR activity, as occurs in smokers, phenocopies the atrophy, mitochondrial impairment, and neuromuscular junction degeneration caused by chronic tobacco smoke exposure.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Receptors, Aryl Hydrocarbon , Animals , Humans , Mice , Muscle, Skeletal/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Smoke/adverse effects , Smoking/adverse effects
7.
J Physiol ; 599(12): 3063-3080, 2021 06.
Article in English | MEDLINE | ID: mdl-33876434

ABSTRACT

KEY POINTS: We used 31-phosphorus magnetic resonance spectroscopy to quantify in vivo skeletal muscle metabolic economy (ME; mass-normalized torque or power produced per ATP consumed) during three 24 s maximal-effort contraction protocols: (1) sustained isometric (MVIC), (2) intermittent isokinetic (MVDCIsoK ), and (3) intermittent isotonic (MVDCIsoT ) in the knee extensor muscles of young and older adults. ME was not different between groups during the MVIC but was lower in older than young adults during both dynamic contraction protocols. These results are consistent with an increased energy cost of locomotion, but not postural support, with age. The effects of old age on ME were not due to age-related changes in muscle oxidative capacity or ATP flux. Specific power was lower in older than young adults, despite similar total ATP synthesis between groups. Together, this suggests a dissociation between cross-bridge activity and ATP utilization with age. ABSTRACT: Muscle metabolic economy (ME; mass-normalized torque or power produced per ATP consumed) is similar in young and older adults during some isometric contractions, but less is known about potential age-related differences in ME during dynamic contractions. We hypothesized that age-related differences in ME would exist only during dynamic contractions, due to the increased energetic demand of dynamic versus isometric contractions. Ten young (Y; 27.5 ± 3.9 years, 6 men) and 10 older (O; 71 ± 5 years, 5 men) healthy adults performed three 24 s bouts of maximal contractions: (1) sustained isometric (MVIC), (2) isokinetic (120°·s-1 , MVDCIsoK ; 0.5 Hz), and (3) isotonic (load = 20% MVIC, MVDCIsoT ; 0.5 Hz). Phosphorus magnetic resonance spectroscopy of the vastus lateralis muscle was used to calculate ATP flux (mM ATP·s-1 ) through the creatine kinase reaction, glycolysis and oxidative phosphorylation. Quadriceps contractile volume (cm3 ) was measured by MRI. ME was calculated using the torque-time integral (MVIC) or power-time integral (MVDCIsoK and MVDCIsoT ), total ATP synthesis and contractile volume. As hypothesized, ME was not different between Y and O during the MVIC (0.12 ± 0.03 vs. 0.12 ± 0.02 Nm. s. cm-3. mM ATP-1 , mean ± SD, respectively; P = 0.847). However, during both MVDCIsoK and MVDCIsoT , ME was lower in O than Y adults (MVDCIsoK : 0.011 ± 0.003 vs. 0.007 ± 0.002 J. cm-3. mM ATP-1 ; P < 0.001; MVDCIsoT : 0.011 ± 0.002 vs. 0.008 ± 0.002; P = 0.037, respectively), despite similar muscle oxidative capacity, oxidative and total ATP flux in both groups. The lower specific power in older than young adults, despite similar total ATP synthesis between groups, suggests there is a dissociation between cross-bridge activity and ATP utilization with age.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Adenosine Triphosphate , Aged , Humans , Knee , Male , Muscle Contraction , Torque , Young Adult
8.
J Physiol ; 599(7): 1997-2013, 2021 04.
Article in English | MEDLINE | ID: mdl-33576028

ABSTRACT

KEY POINTS: The oxygen cost of high-intensity exercise at power outputs above an individual's lactate threshold (LT) is greater than would be predicted by the linear oxygen consumption-power relationship observed below the LT. However, whether these augmentations are caused by an increased ATP cost of force generation (ATPCOST ) or an increased oxygen cost of ATP synthesis is unclear. We used 31 P-MRS to measure changes in cytosolic [ADP] (intramyocellular marker of oxidative metabolism), oxidative ATP synthesis (ATPOX ) and ATPCOST during a 6-stage, stepwise knee extension protocol. ATPCOST was unchanged across stages. The relationship between [ADP] and muscle power output was augmented at workloads above the pH threshold (pHT ; proxy for LT), whereas increases in ATPOX were attenuated. These results suggest the greater oxygen cost of contractions at workloads beyond the pHT is not caused by mechanisms that increase ATPCOST , but rather mechanisms that alter intrinsic mitochondrial function or capacity. ABSTRACT: Increases in skeletal muscle metabolism and oxygen consumption are linearly related to muscle power output for workloads below the lactate threshold (LT), but are augmented (i.e. greater rate of increase relative to workload) thereafter. Presently, it is unclear whether these metabolic augmentations are caused by increases in the ATP cost of force generation (ATPCOST ) or changes in the efficiency of mitochondrial oxygen consumption and oxidative ATP synthesis (ATPOX ). To partition these two hypotheses in vivo, we used 31 P-MRS to calculate slopes relating step-changes in muscle work to concurrent changes in cytosolic phosphates and ATPOX before and after the pH threshold (pHT ; used here as a proxy for LT) within the vastus lateralis muscle of eight young adults during a stepwise knee extension test. Changes in muscle phosphates and ATPOX were linearly related to workload below the pHT . However, slopes above the pHT were greater for muscle phosphates (P < 0.05) and lower for ATPOX (P < 0.05) than were the slopes observed below the pHT . The maximal capacity for ATPOX ( V̇max ) and ADP-specific ATPOX also declined beyond the pHT (P < 0.05), whereas ATPCOST was unchanged (P = 0.10). These results oppose the hypothesis that high-intensity contractions increase ATPCOST and suggest that greater oxidative metabolism at workloads beyond the pHT is caused by mechanisms that affect intrinsic mitochondrial function or capacity, such as alterations in substrate selection or electron entry into the electron transport chain, temperature-mediated changes in mitochondrial permeability to protons, or stimulation of mitochondrial uncoupling by reactive oxygen species generation.


Subject(s)
Oxygen Consumption , Quadriceps Muscle , Adenosine Triphosphate/metabolism , Humans , Hydrogen-Ion Concentration , Muscle, Skeletal/metabolism , Oxidative Stress , Quadriceps Muscle/metabolism , Young Adult
10.
PLoS One ; 15(11): e0234217, 2020.
Article in English | MEDLINE | ID: mdl-33141870

ABSTRACT

Although high-velocity contractions elicit greater muscle fatigue in older than young adults, the cause of this difference is unclear. We examined the potential roles of resting muscle architecture and baseline contractile properties, as well as changes in voluntary activation and low-frequency fatigue in response to high-velocity knee extensor work. Vastus lateralis muscle architecture was determined in quiescent muscle by ultrasonography in 8 young (23.4±1.8 yrs) and 8 older women (69.6±1.1). Maximal voluntary dynamic (MVDC) and isometric (MVIC), and stimulated (80Hz and 10Hz, 500ms) isometric contractions were performed before and immediately after 120 MVDCs (240°.s-1, one every 2s). Architecture variables did not differ between groups (p≥0.209), but the half-time of torque relaxation (T1/2) was longer in older than young women at baseline (151.9±6.0 vs. 118.8±4.4 ms, respectively, p = 0.001). Older women fatigued more than young (to 33.6±4.7% vs. 55.2±4.2% initial torque, respectively; p = 0.004), with no evidence of voluntary activation failure (ΔMVIC:80Hz torque) in either group (p≥0.317). Low-frequency fatigue (Δ10:80Hz torque) occurred in both groups (p<0.001), as did slowing of T1/2 (p = 0.001), with no differences between groups. Baseline T1/2 was inversely associated with fatigue in older (r2 = 0.584, p = 0.045), but not young women (r2 = 0.147, p = 0.348). These results indicate that differences in muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. The inverse association between baseline T1/2 and fatigue in older women suggests that factors related to slower muscle contractile properties may be protective against fatigue during fast, repetitive contractions in aging.


Subject(s)
Aging , Muscle Contraction , Muscle Fatigue , Muscle Strength/physiology , Muscle, Skeletal/physiology , Adult , Aged , Electric Stimulation , Female , Humans , Isometric Contraction , Male , Young Adult
11.
NMR Biomed ; 33(11): e4381, 2020 11.
Article in English | MEDLINE | ID: mdl-32803787

ABSTRACT

Several methods have been developed for using 31 P-MRS to calculate rates of oxidative ATP synthesis (ATPOX ) during muscular contractions based on assumptions that (1) the ATP cost of force generation (ATPCOST ) remains constant or (2) Michaelis-Menten coupling between cytosolic ADP and ATPOX does not change. However, growing evidence suggests that one, or both, of these assumptions are invalid during high-intensity fatigue protocols. Consequently, there is a need to examine the validity and accuracy of traditional ATPOX calculation methods under these conditions. To address this gap, we measured phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during four rest-contraction-recovery trials lasting 24, 60, 120, and 240 s. The initial velocity of phosphocreatine resynthesis (ViPCr ) following each trial served as the criterion measure of ATPOX because this method makes no assumptions of constant ATPCOST or Michaelis-Menten coupling between changes in cytosolic ADP and ATPOX . Subsequently, we calculated ATPOX throughout the 240 s trial using several traditional calculation methods and compared estimations of ATPOX from each method with time-matched measurements of ViPCr . Method 1, which assumes that ATPCOST does not change, was able to model changes in ViPCr over time, but showed poor accuracy for predicting ViPCr across a wide range of ATPOX values. In contrast, Michaelis-Menten methods, which assume that the relationship between changes in cytosolic ADP and ATPOX remains constant, were invalid because they could not model the decline in ViPCr . However, adjusting these Michaelis-Menten methods for observed changes in maximal ATPOX capacity (i.e., Vmax ) permitted modeling of the decline in ViPCr and markedly improved accuracy. The results of these comprehensive analyses demonstrate that valid, accurate measurements of ATPOX can be obtained during high-intensity contractions by adjusting Michaelis-Menten ATPOX calculations for changes in Vmax observed from baseline to post-fatigue.


Subject(s)
Adenosine Triphosphate/biosynthesis , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Adult , Female , Humans , Male , Metabolome , Oxidation-Reduction , Reproducibility of Results , Young Adult
13.
J Biomech Eng ; 142(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32140702

ABSTRACT

A magnetic resonance (MR) compatible ergometer has been developed to study contracting lower limb muscles during acquisition of MR spectroscopy data, a technique to noninvasively measure metabolic energy in muscle tissue. Current active and passive MR-compatible ergometer designs lack torque or velocity control to allow precise mechanical measurements during isotonic and isokinetic contractions; incorporating load and velocity controllers while maintaining MR-compatibility is the main challenge. Presented in this paper is the design and evaluation of an MR-compatible ergometer designed to control knee torque or velocity up to 420 N·m and 270 deg/s and is able to operate in a 3 Tesla magnetic field. The ergometer comprising of a passive component with no electronics or ferrous materials is located inside the bore of the scanner. The active component with the electronics and actuator located outside of the magnetic field in an adjacent room. The active components connect to the passive components via a cable that passes through the waveguide, a hole in the wall of the scanner room. System evaluations were performed and human subject evaluations were performed that measured the mechanical performance and show the mean percent errors below 9% in isotonic and 2% in isokinetic conditions.


Subject(s)
Magnetic Resonance Imaging , Humans , Knee , Muscle, Skeletal , Torque
14.
J Physiol ; 598(10): 1847-1863, 2020 05.
Article in English | MEDLINE | ID: mdl-32045011

ABSTRACT

KEY POINTS: During maximal exercise, skeletal muscle metabolism and oxygen consumption remain elevated despite precipitous declines in power. Presently, it is unclear whether these responses are caused by an increased ATP cost of force generation (ATPCOST ) or mitochondrial uncoupling; a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To address this gap, we used 31-phosphorus magnetic resonance spectroscopy to measure changes in ATPCOST and ATPOX in human quadriceps during repeated trials of maximal intensity knee extensions lasting up to 4 min. ATPCOST remained unchanged. In contrast, ATPOX plateaued by ∼2 min and then declined (∼15%) over the final 2 min. The maximal capacity for ATPOX (Vmax ), as well as ADP-specific rates of ATPOX , were also significantly diminished. Collectively, these results suggest that mitochondrial uncoupling, and not increased ATPCOST , is responsible for altering the regulation of skeletal muscle metabolism and oxygen consumption during maximal exercise. ABSTRACT: The relationship between skeletal muscle oxygen consumption and power output is augmented during exercise at workloads above the lactate threshold. Potential mechanisms for this response have been hypothesized, including increased ATP cost of force generation (ATPCOST ) and mitochondrial uncoupling, a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To test these hypotheses, we used phosphorus magnetic resonance spectroscopy to non-invasively measure changes in phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during repeated trials of maximal, all-out dynamic knee extensions (120°s-1 , 1 every 2 s) lasting 24, 60, 120, and 240 s. ATPOX was measured at each time point from the initial velocity of PCr resynthesis, and ATPCOST was calculated as the sum of ATP synthesized by the creatine and adenylate kinase reactions, non-oxidative glycolysis, ATPOX and net changes in [ATP]. Power output declined in a reproducible manner for all four trials. ATPCOST did not change over time (main effect P = 0.45). ATPOX plateaued from 60 to 120 s and then decreased over the final 120 s (main effect P = 0.001). The maximal capacity for oxidative ATP synthesis (Vmax ), as well as ADP-specific rates of ATPOX , also decreased over time (main effect P = 0.001, both). Collectively, these results demonstrate that prolonged maximal contraction protocols impair oxidative energetics and implicate mitochondrial uncoupling as the mechanism for this response. The causes of mitochondrial uncoupling are presently unknown but may offer a potential explanation for the dissociation between skeletal muscle power output and oxygen consumption during maximal, all-out exercise protocols.


Subject(s)
Oxygen Consumption , Quadriceps Muscle , Adenosine Triphosphate/metabolism , Exercise , Humans , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Quadriceps Muscle/metabolism , Young Adult
15.
Med Sci Sports Exerc ; 51(3): 421-425, 2019 03.
Article in English | MEDLINE | ID: mdl-30395052

ABSTRACT

Caffeine, a popular ergogenic supplement, induces neural and vascular changes that may influence coagulation and/or fibrinolysis at rest and during exercise. PURPOSE: The purpose of this study was to assess the effect of a single dose of caffeine on measures of coagulation and fibrinolysis before and after a single bout of high-intensity exercise. METHODS: Forty-eight men (age, 23 ± 3 yr; body mass index, 24 ± 3 kg·m) completed two trials, with 6 mg·kg of caffeine (CAFF) or placebo (PLAC), in random order, followed by a maximal cycle ergometer test. Plasma concentrations of fibrinogen, factor VIII antigen, active tissue plasminogen activator (tPA:c), tissue plasminogen activator antigen (tPA:g), and active plasminogen activator inhibitor-1 (PAI-1:c) were assessed at baseline and immediately after exercise. RESULTS: Exercise led to significant changes in tPA:c (Δ 8.5 ± 4.36 IU·mL for CAFF, 6.6 ± 3.7 for PLAC), tPA:g (Δ 2.4 ± 3.2 ng·mL for CAFF, 1.9 ± 3.1 for PLAC), fibrinogen (Δ 30.6 ± 61.4 mg·dL for CAFF, 28.1 ± 66.4 for PLAC), and PAI-1:c (Δ -3.4 ± 7.9 IU·mL for CAFF, -4.0 ± 12.0 for PLAC) (all P < 0.05), but no effect of condition or time-condition interactions were observed. Main effects of time, condition, and a significant time-condition interaction were observed for factor VIII, which increased from 1.0 ± 0.4 IU·mL to 3.3 ± 1.3 IU·mL with CAFF and 1.0 ± 0.4 IU·mL to 2.4 ± 0.9 IU·mL with PLAC. CONCLUSIONS: Coagulation potential during exercise is augmented after caffeine intake, without a similar increase in fibrinolysis. These results suggest caffeine intake may increase risk of a thrombotic event during exercise.


Subject(s)
Caffeine/pharmacology , Exercise , Fibrinogen/analysis , Plasminogen Activator Inhibitor 1/blood , Tissue Plasminogen Activator/blood , Adult , Blood Coagulation , Fibrinolysis , Humans , Male , Young Adult
19.
Appl Physiol Nutr Metab ; 41(11): 1137-1145, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27779429

ABSTRACT

Despite intensive efforts to understand the extent to which skeletal muscle mitochondrial capacity changes in older humans, the answer to this important question remains unclear. To determine what the preponderance of evidence from in vivo studies suggests, we conducted a systematic review and meta-analysis of the effects of age on muscle oxidative capacity as measured noninvasively by magnetic resonance spectroscopy. A secondary aim was to examine potential moderators contributing to differences in results across studies, including muscle group, physical activity status, and sex. Candidate papers were identified from PubMed searches (n = 3561 papers) and the reference lists of relevant papers. Standardized effects (Hedges' g) were calculated for age and each moderator using data from the 22 studies that met the inclusion criteria (n = 28 effects). Effects were coded as positive when older (age, ≥55 years) adults had higher muscle oxidative capacity than younger (age, 20-45 years) adults. The overall effect of age on oxidative capacity was positive (g = 0.171, p < 0.001), indicating modestly greater oxidative capacity in old. Notably, there was significant heterogeneity in this result (Q = 245.8, p < 0.001; I2 = ∼70%-90%). Muscle group, physical activity, and sex were all significant moderators of oxidative capacity (p ≤ 0.029). This analysis indicates that the current body of literature does not support a de facto decrease of in vivo muscle oxidative capacity in old age. The heterogeneity of study results and identification of significant moderators provide clarity regarding apparent discrepancies in the literature, and indicate the importance of accounting for these variables when examining purported age-related differences in muscle oxidative capacity.


Subject(s)
Aging , Down-Regulation , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Aged , Aged, 80 and over , Humans , Middle Aged , Motor Activity , Muscle, Skeletal/growth & development , Organ Specificity , Oxidation-Reduction , Reproducibility of Results , Sex Characteristics , Up-Regulation
20.
J Appl Physiol (1985) ; 121(4): 996-1003, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27539499

ABSTRACT

Because of the fundamental dependence of mammalian life on adequate mitochondrial function, the question of how and why mitochondria change in old age is the target of intense study. Given the importance of skeletal muscle for the support of mobility and health, this question extends to the need to understand mitochondrial changes in the muscle of older adults, as well. We and others have focused on clarifying the age-related changes in human skeletal muscle mitochondrial function in vivo. These changes include both the maximal capacity for oxidative production of energy (ATP), as well as the relative use of mitochondrial ATP production for powering muscular activity. It has been known for nearly 50 yr that muscle mitochondrial content is highly plastic; exercise training can induce an ∼2-fold increase in mitochondrial content, while disuse has the opposite effect. Here, we suggest that a portion of the age-related changes in mitochondrial function that have been reported are likely the result of behavioral effects, as physical activity influences have not always been accounted for. Further, there is emerging evidence that various muscles may be affected differently by age-related changes in physical activity and movement patterns. In this review, we will focus on age-related changes in oxidative capacity and flux measured in vivo in human skeletal muscle.


Subject(s)
Adenosine Triphosphate/metabolism , Aging/physiology , Energy Metabolism/physiology , Exercise/physiology , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Adaptation, Physiological/physiology , Animals , Evidence-Based Medicine , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...