Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(20): 14303-14314, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37798258

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause high-morbidity infections. Due to its robust, flexible genome and ability to form biofilms, it can evade and rapidly develop resistance to antibiotics. Cationic conjugated oligoelectrolytes (COEs) have emerged as a promising class of antimicrobials. Herein, we report a series of amidine-containing COEs with high selectivity for bacteria. From this series, we identified 1b as the most active compound against P. aeruginosa (minimum inhibitory concentration (MIC) = 2 µg/mL) with low cytotoxicity (IC50 (HepG2) = 1024 µg/mL). The activity of 1b was not affected by known drug-resistant phenotypes of 100 diverse P. aeruginosa isolates. Moreover, 1b is bactericidal with a low propensity for P. aeruginosa to develop resistance. Furthermore, 1b is also able to inhibit biofilm formation at subinhibitory concentrations and kills P. aeruginosa in established biofilms. The in vivo efficacy of 1b was demonstrated in biofilm-associated murine wound infection models.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
2.
Virulence ; 14(1): 2186331, 2023 12.
Article in English | MEDLINE | ID: mdl-36976806

ABSTRACT

Antimicrobial resistance (AMR) is a worldwide problem, which is driving more preclinical research to find new treatments and countermeasures for drug-resistant bacteria. However, translational models in the preclinical space have remained static for years. To improve animal use ethical considerations, we assessed novel methods to evaluate survival after lethal infection with ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli) in pulmonary models of infection. Consistent with published lung infection models often used for novel antimicrobial development, BALB/c mice were immunosuppressed with cyclophosphamide and inoculated intranasally with individual ESKAPEE pathogens or sterile saline. Observations were recorded at frequent intervals to determine predictive thresholds for humane endpoint decision-making. Internal temperature was measured via implanted IPTT300 microchips, and external temperature was measured using a non-contact, infrared thermometer. Additionally, clinical scores were evaluated based on animal appearance, behaviour, hydration status, respiration, and body weight. Internal temperature differences between survivors and non-survivors were statistically significant for E. faecium, S. aureus, K. pneumoniae, A. baumannii, E. cloacae, and E. coli, and external temperature differences were statistically significant for S. aureus, K. pneumoniae, E. cloacae, and E. coli. Internal temperature more precisely predicted mortality compared to external temperature, indicating that a threshold of 85ºF (29.4ºC) was 86.0% predictive of mortality and 98.7% predictive of survival. Based on our findings, we recommend future studies involving BALB/c mice ESKAPEE pathogen infection use temperature monitoring as a humane endpoint threshold.


Subject(s)
Enterococcus faecium , Staphylococcus aureus , Animals , Mice , Temperature , Mice, Inbred BALB C , Escherichia coli , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests , Drug Resistance, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...