Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 6(10): 1907-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24058060

ABSTRACT

Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Absorption , Electric Power Supplies , Solar Energy , Time Factors
2.
Nano Lett ; 13(8): 3817-23, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23899318

ABSTRACT

Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

3.
ACS Appl Mater Interfaces ; 5(8): 2893-900, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23469824

ABSTRACT

In this study we introduce a new method for the one-pot synthesis of core/shell/shell alloyed Cd1-xZnxSe/ZnSe/ZnS QDs and examine the effect of the shell coating on the optical properties and exciton dynamics of the alloy core. The photoluminescence (PL) quantum yield is greatly enhanced after shell growth, from 9.6% to 63%. The exciton dynamics were studied by time correlated single photon counting (TCSPC) and fit using integrated singular value decomposition global fitting (i-SVD-GF), which showed the biexponential observed lifetimes on the nanosecond time scale remain the same after shell growth. Using ultrafast transient absorption (TA) spectroscopy and SVD-GF, we have determined that surface passivation by ZnSe and ZnSe/ZnS shells reduces nonradiative recombination primarily on the picosecond time scale. These findings are helpful in directing the development of the next generation of QDs for biological labeling and other applications.


Subject(s)
Alloys/chemistry , Biomedical Research/instrumentation , Metal Nanoparticles/chemistry , Alloys/chemical synthesis , Cadmium/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Quantum Dots , Selenium/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...