Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072244

ABSTRACT

Bats are capable of asymptomatically carrying a diverse number of microorganisms, including human pathogens, due to their unique immune system. Because of the close contact between bats and humans, there is a possibility for interspecies transmission and consequential disease outbreaks. Herein, high-throughput sequencing was used to determine the kidney-associated microbiome of a bat species abundant in Grenada, West Indies, Artibeus spp. Results indicate that the kidney of these bats can carry potential human pathogens. An endogenous retrovirus, Desmodus rotundus endogenous retrovirus isolate 824, phylogenetically related to betaretroviruses from rodents and New World primates, was also identified.

2.
J Parasitol ; 107(2): 267-274, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33784742

ABSTRACT

The hawksbill turtle Eretmochelys imbricata is a critically endangered species with a worldwide distribution. Limited information is available about the naturally occurring intestinal parasites of this species and what impact these parasites may have on the health of the hawksbill turtle. Diaschistorchis pandus was identified postmortem in 5 hawksbill turtles from Grenada, West Indies, using morphologic characterization. Sanger sequencing was performed for conserved ribosomal regions (5.8S, ITS2, 28S) and the mitochondrial cytochrome c oxidase subunit 1 gene (COI). Phylogenetic analysis of the 28S rRNA gene sequence data shows D. pandus clustering with other trematodes in the family Pronocephalidae, corroborating morphological classification. No genetic sequences have been previously reported for this trematode species, which has limited the collection of objective epidemiological data about this parasite of marine turtles.


Subject(s)
Trematoda/classification , Trematode Infections/veterinary , Turtles/parasitology , Animals , Autopsy/veterinary , DNA, Helminth/chemistry , DNA, Helminth/genetics , Endangered Species , Grenada , Intestine, Small/parasitology , Intestine, Small/pathology , Male , Phylogeny , RNA, Ribosomal, 28S/genetics , Trematoda/anatomy & histology , Trematoda/genetics , Trematoda/isolation & purification , Trematode Infections/parasitology
3.
Trop Med Infect Dis ; 5(4)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158108

ABSTRACT

Chagas disease is a neglected tropical disease caused by infection with Trypanosoma cruzi. The parasite is endemic to the Americas, including the Caribbean, where it is vectored by triatomine bugs. Although Chagas disease is not considered a public health concern in the Caribbean islands, studies in Trinidad have found T. cruzi-seropositive humans and T. cruzi-infected triatomine bugs. However, little is known about triatomine bug host preferences in Trinidad, making it difficult to evaluate local risk of vector-borne T. cruzi transmission to humans. To investigate this question, we collected triatomine bugs in Trinidad and diagnosed each one for T. cruzi infection (microscopy and PCR). We then carried out a blood meal analysis using DNA extracted from each bug (PCR and sequencing). Fifty-five adult bugs (54 Panstrongylus geniculatus and one Rhodnius pictipes) were collected from five of 21 sample sites. All successful collection sites were residential. Forty-six out of the 55 bugs (83.6%) were infected with T. cruzi. Fifty-three blood meal hosts were successfully analyzed (one per bug), which consisted of wild birds (7% of all blood meals), wild mammals (17%), chickens (19%), and humans (57%). Of the 30 bugs with human blood meals, 26 (87%) were from bugs infected with T. cruzi. Although preliminary, our results align with previous work in which P. geniculatus in Trinidad had high levels of T. cruzi infection. Furthermore, our findings suggest that P. geniculatus moves between human and animal environments in Trinidad, feeding opportunistically on a wide range of species. Our findings highlight a critical need for further studies of Chagas disease in Trinidad in order to estimate the public health risk and implement necessary preventative and control measures.

4.
PLoS One ; 15(4): e0231047, 2020.
Article in English | MEDLINE | ID: mdl-32282857

ABSTRACT

The mosquitoes Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) are two major vectors of arthropod-borne pathogens in Grenada, West Indies. As conventional vector control methods present many challenges, alternatives are urgently needed. Manipulation of mosquito microbiota is emerging as a field for the development of vector control strategies. Critical to this vector control approach is knowledge of the microbiota of these mosquitoes and finding candidate microorganisms that are common to the vectors with properties that could be used in microbiota modification studies. Results showed that bacteria genera including Asaia, Escherichia, Pantoea, Pseudomonas, and Serratia are common to both major arboviral vectors in Grenada and have previously been shown to be good candidates for transgenetic studies. Also, for the first time, the presence of Grenada mosquito rhabdovirus 1 is reported in C. quinquefasciatus.


Subject(s)
Aedes/genetics , Culex/genetics , Genome, Insect/genetics , Metagenomics , Aedes/microbiology , Aedes/virology , Animals , Culex/microbiology , Culex/virology , Female , Grenada , Male , Polymerase Chain Reaction
5.
PLoS One ; 15(1): e0227998, 2020.
Article in English | MEDLINE | ID: mdl-32004323

ABSTRACT

Arboviruses cause diseases of significant global health concerns. Interactions between mosquitoes and their microbiota as well as the important role of this interaction in the mosquito's capacity to harbor and transmit pathogens have emerged as important fields of research. Aedes aegypti is one of the most abundant mosquitoes in many geographic locations, a vector capable of transmitting a number of arboviruses such as dengue and Zika. Currently, there are few studies on the metavirome of this mosquito particularly in the Americas. This study analyzes the metavirome of A. aegypti from Grenada, a Caribbean nation with tropical weather, abundant A. aegypti, and both endemic and arboviral pathogens transmitted by this mosquito. Between January and December 2018, 1152 mosquitoes were collected from six semi-rural locations near houses in St. George Parish, Grenada, by weekly trapping using BG-Sentinel traps. From these, 300 A. aegypti were selected for analysis. The metavirome was analyzed using the Illumina HiSeq 1500 for deep sequencing. The generation sequencing library construction protocol used was NuGEN Universal RNA with an average read length of 125 bp. Reads were mapped to the A. aegypti assembly. Non-mosquito reads were analyzed using the tools FastViromeExplorer. The NCBI total virus, RNA virus, and eukaryotic virus databases were used as references. The metagenomic comparison analysis showed that the most abundant virus-related reads among all databases and assemblies was Phasi Charoen-like virus. The Phasi Charoen-like virus results are in agreement to other studies in America, Asia and Australia. Further studies using wild-caught mosquitoes is needed to assess the impact of this insect-specific virus on the A. aegypti lifecycle and vector capacity.


Subject(s)
Aedes/virology , Arboviruses , Genome, Viral/genetics , Insect Viruses , Metagenome , Animals , Arboviruses/classification , Arboviruses/genetics , Grenada , Insect Viruses/classification , Insect Viruses/genetics , Mosquito Vectors/virology
6.
PLoS Negl Trop Dis ; 14(1): e0007940, 2020 01.
Article in English | MEDLINE | ID: mdl-31961893

ABSTRACT

Bats can harbor zoonotic pathogens, but their status as reservoir hosts for Leptospira bacteria is unclear. During 2015-2017, kidneys from 47 of 173 bats captured in Grenada, West Indies, tested PCR-positive for Leptospira. Sequence analysis of the Leptospira rpoB gene from 31 of the positive samples showed 87-91% similarity to known Leptospira species. Pairwise and phylogenetic analysis of sequences indicate that bats from Grenada harbor as many as eight undescribed Leptospira genotypes that are most similar to known pathogenic Leptospira, including known zoonotic serovars. Warthin-Starry staining revealed leptospiral organisms colonizing the renal tubules in 70% of the PCR-positive bats examined. Mild inflammatory lesions in liver and kidney observed in some bats were not significantly correlated with renal Leptospira PCR-positivity. Our findings suggest that Grenada bats are asymptomatically infected with novel and diverse Leptospira genotypes phylogenetically related to known pathogenic strains, supporting the hypothesis that bats may be reservoirs for zoonotic Leptospira.


Subject(s)
Chiroptera/microbiology , Disease Reservoirs/microbiology , Leptospira/classification , Leptospirosis/veterinary , Animals , Disease Reservoirs/veterinary , Grenada , Kidney/microbiology , Kidney/pathology , Leptospira/genetics , Leptospira/isolation & purification , Leptospirosis/microbiology , Leptospirosis/pathology , Liver/microbiology , Liver/pathology , Phylogeny
7.
J Food Prot ; 82(7): 1244-1248, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31237789

ABSTRACT

HIGHLIGHTS: Helminths in Selar crumenophthalmus fish were identified by PCR. Two helminth taxa were identified: Anisakis typica and an unknown acanthocephalan. Neither taxon of helminth identified is zoonotic. To our knowledge, this is the first report of either type of helminth in fish in Grenada.


Subject(s)
Acanthocephala , Anisakis , Acanthocephala/classification , Acanthocephala/genetics , Animals , Anisakis/classification , Anisakis/genetics , Fish Diseases/parasitology , Fishes/parasitology , Grenada
8.
J Med Entomol ; 56(4): 1170-1175, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31245825

ABSTRACT

Blood-feeding patterns of mosquitoes affect the transmission and maintenance of arboviral diseases. In the Caribbean, Aedes aegypti (L.) and Culex quinquefasciatus Say mosquitoes are the dominant mosquito species in developed areas. However, no information is available on the bloodmeal hosts of these invasive vectors in Grenada, where arboviral pathogens such as dengue, chikungunya, and Zika viruses cause significant human suffering. To this end, Ae. aegypti and Cx. quinquefasciatus mosquitoes were investigated from five semirural locations near houses in St. George's Parish, from 2017 to 2018. Polymerase chain reaction was conducted on DNA extracted from individual blood-fed mosquitoes using vertebrate-specific cytochrome b primers. The 32 Ae. aegypti bloodmeals included humans (70%), mongooses (18%), domestic dogs (6%), a domestic cat (3%), and an unidentified bird (3%). Thirty-seven Cx. quinquefasciatus mosquitoes took bloodmeals from seven species of birds (51%), humans (27%), domestic cats (8%), iguanas (5%), a domestic dog (3%), a rat (3%), and a common opossum (3%). The high percentage of human bloodmeal hosts in our study, especially by the normally anthropophilic Ae. aegypti, is expected. The bloodmeal sources and the percentage of nonhuman bloodmeals (30%) taken by Ae. aegypti are comparable to other studies. The large range of hosts may be explained in part by the semirural nature of most local housing. Accordingly, this may contribute to an exchange of pathogens between domestic, peridomestic, and sylvatic transmission cycles.


Subject(s)
Aedes , Culex , DNA/analysis , Animals , Blood Chemical Analysis , Cats , Dogs , Feeding Behavior , Grenada , Humans , Polymerase Chain Reaction , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...