Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960710

ABSTRACT

Functional liver parenchyma can be damaged from treatment of liver malignancies with 90Y selective internal radiation therapy (SIRT). Evaluating functional parenchymal changes and developing an absorbed dose (AD)-toxicity model can assist the clinical management of patients receiving SIRT. We aimed to determine whether there is a correlation between 90Y PET AD voxel maps and spatial changes in the nontumoral liver (NTL) function derived from dynamic gadoxetic acid-enhanced MRI before and after SIRT. Methods: Dynamic gadoxetic acid-enhanced MRI scans were acquired before and after treatment for 11 patients undergoing 90Y SIRT. Gadoxetic acid uptake rate (k1) maps that directly quantify spatial liver parenchymal function were generated from MRI data. Voxel-based AD maps, derived from the 90Y PET/CT scans, were binned according to AD. Pre- and post-SIRT k1 maps were coregistered to the AD map. Absolute and percentage k1 loss in each bin was calculated as a measure of loss of liver function, and Spearman correlation coefficients between k1 loss and AD were evaluated for each patient. Average k1 loss over the patients was fit to a 3-parameter logistic function based on AD. Patients were further stratified into subgroups based on lesion type, baseline albumin-bilirubin scores and alanine transaminase levels, dose-volume effect, and number of SIRT treatments. Results: Significant positive correlations (ρ = 0.53-0.99, P < 0.001) between both absolute and percentage k1 loss and AD were observed in most patients (8/11). The average k1 loss over 9 patients also exhibited a significant strong correlation with AD (ρ ≥ 0.92, P < 0.001). The average percentage k1 loss of patients across AD bins was 28%, with a logistic function model demonstrating about a 25% k1 loss at about 100 Gy. Analysis between patient subgroups demonstrated that k1 loss was greater among patients with hepatocellular carcinoma, higher alanine transaminase levels, larger fractional volumes of NTL receiving an AD of 70 Gy or more, and sequential SIRT treatments. Conclusion: Novel application of multimodality imaging demonstrated a correlation between 90Y SIRT AD and spatial functional liver parenchymal degradation, indicating that a higher AD is associated with a larger loss of local hepatocyte function. With the developed response models, PET-derived AD maps can potentially be used prospectively to identify localized damage in liver and to enhance treatment strategies.

2.
Eur J Nucl Med Mol Imaging ; 50(10): 2984-2996, 2023 08.
Article in English | MEDLINE | ID: mdl-37171633

ABSTRACT

PURPOSE: Metastatic neuroendocrine tumors (NETs) overexpressing type 2 somatostatin receptors are the target for peptide receptor radionuclide therapy (PRRT) through the theragnostic pair of 68Ga/177Lu-DOTATATE. The main purpose of this study was to develop machine learning models to predict therapeutic tumor dose using pre therapy 68Ga -PET and clinicopathological biomarkers. METHODS: We retrospectively analyzed 90 segmented metastatic NETs from 25 patients (M14/F11, age 63.7 ± 9.5, range 38-76) treated by 177Lu-DOTATATE at our institute. Patients underwent both pretherapy [68Ga]Ga-DOTA-TATE PET/CT and four timepoints SPECT/CT at ~ 4, 24, 96, and 168 h post-177Lu-DOTATATE infusion. Tumors were segmented by a radiologist on baseline CT or MRI and transferred to co-registered PET/CT and SPECT/CT, and normal organs were segmented by deep learning-based method on CT of the PET and SPECT. The SUV metrics and tumor-to-normal tissue SUV ratios (SUV_TNRs) were calculated from 68Ga -PET at the contour-level. Posttherapy dosimetry was performed based on the co-registration of SPECT/CTs to generate time-integrated-activity, followed by an in-house Monte Carlo-based absorbed dose estimation. The correlation between delivered 177Lu Tumor absorbed dose and PET-derived metrics along with baseline clinicopathological biomarkers (such as Creatinine, Chromogranin A and prior therapies) were evaluated. Multiple interpretable machine-learning algorithms were developed to predict tumor dose using these pretherapy information. Model performance on a nested tenfold cross-validation was evaluated in terms of coefficient of determination (R2), mean-absolute-error (MAE), and mean-relative-absolute-error (MRAE). RESULTS: SUVmean showed a significant correlation (q-value < 0.05) with absorbed dose (Spearman ρ = 0.64), followed by TLSUVmean (SUVmean of total-lesion-burden) and SUVpeak (ρ = 0.45 and 0.41, respectively). The predictive value of PET-SUVmean in estimation of posttherapy absorbed dose was stronger compared to PET-SUVpeak, and SUV_TNRs in terms of univariate analysis (R2 = 0.28 vs. R2 ≤ 0.12). An optimal trivariate random forest model composed of SUVmean, TLSUVmean, and total liver SUVmean (normal and tumoral liver) provided the best performance in tumor dose prediction with R2 = 0.64, MAE = 0.73 Gy/GBq, and MRAE = 0.2. CONCLUSION: Our preliminary results demonstrate the feasibility of using baseline PET images for prediction of absorbed dose prior to 177Lu-PRRT. Machine learning models combining multiple PET-based metrics performed better than using a single SUV value and using other investigated clinicopathological biomarkers. Developing such quantitative models forms the groundwork for the role of 68Ga -PET not only for the implementation of personalized treatment planning but also for patient stratification in the era of precision medicine.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Humans , Middle Aged , Aged , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Octreotide/therapeutic use , Retrospective Studies , Organometallic Compounds/therapeutic use , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/drug therapy , Biomarkers
3.
EJNMMI Phys ; 9(1): 90, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542239

ABSTRACT

PURPOSE: The aim was to quantify inter- and intra-observer variability in manually delineated hepatocellular carcinoma (HCC) lesion contours and the resulting impact on radioembolization (RE) dosimetry. METHODS: Ten patients with HCC lesions treated with Y-90 RE and imaged with post-therapy Y-90 PET/CT were selected for retrospective analysis. Three radiologists contoured 20 lesions manually on baseline multiphase contrast-enhanced MRIs, and two of the radiologists re-contoured at two additional sessions. Contours were transferred to co-registered PET/CT-based Y-90 dose maps. Volume-dependent recovery coefficients were applied for partial volume correction (PVC) when reporting mean absorbed dose. To understand how uncertainty varies with tumor size, we fit power models regressing relative uncertainty in volume and in mean absorbed dose on contour volume. Finally, we determined effects of segmentation uncertainty on tumor control probability (TCP), as calculated using logistic models developed in a previous RE study. RESULTS: The average lesion volume ranged from 1.8 to 194.5 mL, and the mean absorbed dose ranged from 23.4 to 1629.0 Gy. The mean inter-observer Dice coefficient for lesion contours was significantly less than the mean intra-observer Dice coefficient (0.79 vs. 0.85, p < 0.001). Uncertainty in segmented volume, as measured by the Coefficient of Variation (CV), ranged from 4.2 to 34.7% with an average of 17.2%. The CV in mean absorbed dose had an average value of 5.4% (range 1.2-13.1%) without PVC while it was 15.1% (range 1.5-55.2%) with PVC. Using the fitted models for uncertainty as a function of volume on our prior data, the mean change in TCP due to segmentation uncertainty alone was estimated as 16.2% (maximum 48.5%). CONCLUSIONS: Though we find relatively high inter- and intra-observer reliability overall, uncertainty in tumor contouring propagates into non-negligible uncertainty in dose metrics and outcome prediction for individual cases that should be considered in dosimetry-guided treatment.

4.
Nucl Med Commun ; 43(8): 892-900, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35703269

ABSTRACT

BACKGROUND: Our goal is to quantitatively compare radiotracer biodistributions within tumors and major normal organs on pretherapy 68 Ga-DOTATATE PET to post-therapy 177 Lu-DOTATATE single-photon emission computed tomography (SPECT) in patients receiving peptide receptor radionuclide therapy (PRRT). METHODS: PET/CT at ~ 60 min postinjection of Ga-68 DOTATATE and research 177 Lu-SPECT/CT imaging ~ at 4 h (SPECT1) and ~ 24 h (SPECT2) post-cycle#1 were available. Manual contours of lesions on baseline CT or MRI were applied to co-registered SPECT/CT and PET/CT followed by deep learning-based CT auto-segmentation of organs. Tumor-to-normal organ ratios (TNR) were calculated from standardized uptake values (SUV) mean and SUV peak for tumor, and SUV mean for non-tumoral liver (nliver), spleen and kidney. RESULTS: There were 90 lesons in 24 patients with progressive metastatic neuroendocrine tumor. The correlation between PET and SPECT SUV TNRs were poor/moderate: PET versus SPECT1 R 2 = 0.19, 0.21, 0.29; PET versus SPECT2 R 2 = 0.06, 0.16, 0.33 for TNR nliver ,TNR spleen ,TNR kidney , respectively. Across all patients, the average value of the TNR measured on PET was significantly lower than on SPECT at both time points ( P < 0.001). Using SUV mean for tumor, average TNR values and 95% confidence intervals (CI) were PET: TNR nliver = 3.5 [CI: 3.0-3.9], TNR spleen = 1.3 [CI, 1.2-1.5], TNR kidney = 1.7 [CI: 1.6-1.9]; SPECT1: TNR nliver = 10 [CI: 8.2-11.7], TNR spleen = 2.9 [CI: 2.5-3.4], TNR kidney = 2.8 [CI: 2.3-3.3]; SPECT2: TNR nliver = 16.9 [CI: 14-19.9], TNR spleen = 3.6 [CI: 3-4.2], TNR kidney = 3.6 [CI: 3.0-4.2]. Comparison of PET and SPECT results in a sphere phantom study demonstrated that these differences are not attributed to imaging modality. CONCLUSIONS: Differences in TNR exist for the theranostic pair, with significantly higher SUV TNR on 177 Lu SPECT compared with 68 Ga PET. We postulate this phenomenon is due to temporal differences in DOTATATE uptake and internalization in tumor as compared to normal organs.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Gallium Radioisotopes , Humans , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radioisotopes , Radionuclide Imaging , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...