Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0299255, 2024.
Article in English | MEDLINE | ID: mdl-38722923

ABSTRACT

Despite the huge importance that the centrality metrics have in understanding the topology of a network, too little is known about the effects that small alterations in the topology of the input graph induce in the norm of the vector that stores the node centralities. If so, then it could be possible to avoid re-calculating the vector of centrality metrics if some minimal changes occur in the network topology, which would allow for significant computational savings. Hence, after formalising the notion of centrality, three of the most basic metrics were herein considered (i.e., Degree, Eigenvector, and Katz centrality). To perform the simulations, two probabilistic failure models were used to describe alterations in network topology: Uniform (i.e., all nodes can be independently deleted from the network with a fixed probability) and Best Connected (i.e., the probability a node is removed depends on its degree). Our analysis suggests that, in the case of degree, small variations in the topology of the input graph determine small variations in Degree centrality, independently of the topological features of the input graph; conversely, both Eigenvector and Katz centralities can be extremely sensitive to changes in the topology of the input graph. In other words, if the input graph has some specific features, even small changes in the topology of the input graph can have catastrophic effects on the Eigenvector or Katz centrality.


Subject(s)
Algorithms , Computer Simulation , Models, Theoretical , Models, Statistical , Probability
2.
EClinicalMedicine ; 50: 101494, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35755600

ABSTRACT

Background: Glycans play essential functional roles in the nervous system and their pathobiological relevance has become increasingly recognized in numerous brain disorders, but not fully explored in traumatic brain injury (TBI). We investigated longitudinal glycome patterns in patients with moderate to severe TBI (Glasgow Coma Scale [GCS] score ≤12) to characterize glyco-biomarker signatures and their relation to clinical features and long-term outcome. Methods: This prospective single-center observational study included 51 adult patients with TBI (GCS ≤12) admitted to the neurosurgical unit of the University Hospital of Pecs, Pecs, Hungary, between June 2018 and April 2019. We used a high-throughput liquid chromatography-tandem mass spectrometry platform to assess serum levels of N-glycans up to 3 days after injury. Outcome was assessed using the Glasgow Outcome Scale-Extended (GOS-E) at 12 months post-injury. Multivariate statistical techniques, including principal component analysis and orthogonal partial least squares discriminant analysis, were used to analyze glycomics data and define highly influential structures driving class distinction. Receiver operating characteristic analyses were used to determine prognostic accuracy. Findings: We identified 94 N-glycans encompassing all typical structural types, including oligomannose, hybrid, and complex-type entities. Levels of high mannose, hybrid and sialylated structures were temporally altered (p<0·05). Four influential glycans were identified. Two brain-specific structures, HexNAc5Hex3DeoxyHex0NeuAc0 and HexNAc5Hex4DeoxyHex0NeuAc1, were substantially increased early after injury in patients with unfavorable outcome (GOS-E≤4) (area under the curve [AUC]=0·75 [95%CI 0·59-0·90] and AUC=0·71 [0·52-0·89], respectively). Serum levels of HexNAc7Hex7DeoxyHex1NeuAc2 and HexNAc8Hex6DeoxyHex0NeuAc0 were persistently increased in patients with favorable outcome, but undetectable in those with unfavorable outcome. Levels of HexNAc5Hex4DeoxyHex0NeuAc1 were acutely elevated in patients with mass lesions and in those requiring decompressive craniectomy. Interpretation: In spite of the exploratory nature of the study and the relatively small number of patients, our results provide to the best of our knowledge initial evidence supporting the utility of glycomics approaches for biomarker discovery and patient phenotyping in TBI. Further larger multicenter studies will be required to validate our findings and to determine their pathobiological value and potential applications in practice. Funding: This work was funded by the Italian Ministry of Health (grant number GR-2013-02354960), and also partially supported by a NIH grant (1R01GM112490-08).

3.
PLoS One ; 16(8): e0255067, 2021.
Article in English | MEDLINE | ID: mdl-34379625

ABSTRACT

Data collected in criminal investigations may suffer from issues like: (i) incompleteness, due to the covert nature of criminal organizations; (ii) incorrectness, caused by either unintentional data collection errors or intentional deception by criminals; (iii) inconsistency, when the same information is collected into law enforcement databases multiple times, or in different formats. In this paper we analyze nine real criminal networks of different nature (i.e., Mafia networks, criminal street gangs and terrorist organizations) in order to quantify the impact of incomplete data, and to determine which network type is most affected by it. The networks are firstly pruned using two specific methods: (i) random edge removal, simulating the scenario in which the Law Enforcement Agencies fail to intercept some calls, or to spot sporadic meetings among suspects; (ii) node removal, modeling the situation in which some suspects cannot be intercepted or investigated. Finally we compute spectral distances (i.e., Adjacency, Laplacian and normalized Laplacian Spectral Distances) and matrix distances (i.e., Root Euclidean Distance) between the complete and pruned networks, which we compare using statistical analysis. Our investigation identifies two main features: first, the overall understanding of the criminal networks remains high even with incomplete data on criminal interactions (i.e., when 10% of edges are removed); second, removing even a small fraction of suspects not investigated (i.e., 2% of nodes are removed) may lead to significant misinterpretation of the overall network.


Subject(s)
Criminals , Data Analysis , Social Networking , Algorithms , Humans , Terrorism
4.
PLoS One ; 15(8): e0236476, 2020.
Article in English | MEDLINE | ID: mdl-32756592

ABSTRACT

Compared to other types of social networks, criminal networks present particularly hard challenges, due to their strong resilience to disruption, which poses severe hurdles to Law-Enforcement Agencies (LEAs). Herein, we borrow methods and tools from Social Network Analysis (SNA) to (i) unveil the structure and organization of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently reduce the Largest Connected Component (LCC) of two networks derived from them. Mafia networks have peculiar features in terms of the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations. Analysts also face difficulties in collecting reliable datasets that accurately describe the gangs' internal structure and their relationships with the external world, which is why earlier studies are largely qualitative, elusive and incomplete. An added value of our work is the generation of two real-world datasets, based on raw data extracted from juridical acts, relating to a Mafia organization that operated in Sicily during the first decade of 2000s. We created two different networks, capturing phone calls and physical meetings, respectively. Our analysis simulated different intervention procedures: (i) arresting one criminal at a time (sequential node removal); and (ii) police raids (node block removal). In both the sequential, and the node block removal intervention procedures, the Betweenness centrality was the most effective strategy in prioritizing the nodes to be removed. For instance, when targeting the top 5% nodes with the largest Betweenness centrality, our simulations suggest a reduction of up to 70% in the size of the LCC. We also identified that, due the peculiar type of interactions in criminal networks (namely, the distribution of the interactions' frequency), no significant differences exist between weighted and unweighted network analysis. Our work has significant practical applications for perturbing the operations of criminal and terrorist networks.


Subject(s)
Criminals/psychology , Social Networking , Humans , Sicily
5.
Comput Methods Programs Biomed ; 177: 9-15, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31319965

ABSTRACT

BACKGROUND AND OBJECTIVE: Patients with End- Stage Kidney Disease (ESKD) have a unique cardiovascular risk. This study aims at predicting, with a certain precision, death and cardiovascular diseases in dialysis patients. METHODS: To achieve our aim, machine learning techniques have been used. Two datasets have been taken into consideration: the first is an Italian dataset obtained from the Istituto di Fisiologia Clinica of Consiglio Nazionale delle Ricerche of Reggio Calabria; the second is an American dataset provided by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) repository. From each one we obtained 5 datasets, according to the outcome of interest. We tested different types of algorithm (both linear and non-linear), but the final choice was to use Support Vector Machine. In particular, we obtained the best performances using the non-linear SVC with RBF kernel algorithm, optimizing it with GridSearch. The last is an algorithm useful to search the best combination of hyper-parameters (in our case, to find the best couple (C, γ)), in order to improve the accuracy of the algorithm. RESULTS: The use of non-linear SVC with RBF kernel algorithm, optimized with GridSearch, allowed to obtain an accuracy of 95.25% in the Italian dataset and of 92.15% in the American dataset, in a timeframe of 2.5 years,in the prediction of Ischaemic Heart Disease. A worse performance was obtained for the other outcomes. CONCLUSIONS: The machine learning-based approach applied in our study is able to predict, with a high accuracy, the outbreak of cardiovascular diseases in patients on dialysis.


Subject(s)
Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Kidney Failure, Chronic/epidemiology , Machine Learning , Aged , Algorithms , Bayes Theorem , Biomarkers/metabolism , Cardiovascular Diseases/complications , Databases, Factual , False Positive Reactions , Female , Humans , Italy/epidemiology , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/diagnosis , Male , Middle Aged , Models, Statistical , Prognosis , Registries , Risk , Sensitivity and Specificity , Support Vector Machine
6.
J Chem Phys ; 147(16): 164502, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29096484

ABSTRACT

Values of the fifth virial coefficient, compressibility factors, and fluid-fluid coexistence curves of binary asymmetric nonadditive mixtures of hard disks are reported. The former correspond to a wide range of size ratios and positive nonadditivities and have been obtained through a standard Monte Carlo method for the computation of the corresponding cluster integrals. The compressibility factors as functions of density, derived from canonical Monte Carlo simulations, have been obtained for two values of the size ratio (q = 0.4 and q = 0.5), a value of the nonadditivity parameter (Δ = 0.3), and five values of the mole fraction of the species with the biggest diameter (x1 = 0.1, 0.3, 0.5, 0.7, and 0.9). Some points of the coexistence line relative to the fluid-fluid phase transition for the same values of the size ratios and nonadditivity parameter have been obtained from Gibbs ensemble Monte Carlo simulations. A comparison is made between the numerical results and those that follow from some theoretical equations of state.

8.
J Chem Phys ; 142(22): 224903, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071727

ABSTRACT

The relevance of neglecting three- and four-body interactions in the coarse-grained version of the Asakura-Oosawa model is examined. A mapping between the first few virial coefficients of the binary nonadditive hard-sphere mixture representative of this model and those arising from the coarse-grained (pairwise) depletion potential approximation allows for a quantitative evaluation of the effect of such interactions. This turns out to be especially important for large size ratios and large reservoir polymer packing fractions.

9.
J Chem Phys ; 142(1): 014902, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25573578

ABSTRACT

The problem of demixing in the Asakura-Oosawa colloid-polymer model is considered. The critical constants are computed using truncated virial expansions up to fifth order. While the exact analytical results for the second and third virial coefficients are known for any size ratio, analytical results for the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically for particular size ratios using standard Monte Carlo techniques. We have computed the critical constants by successively considering the truncated virial series up to the second, third, fourth, and fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions are compared with those that follow from available Monte Carlo simulations in the grand canonical ensemble. Limitations and perspectives of this approach are pointed out.

10.
J Chem Phys ; 141(21): 214508, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481153

ABSTRACT

We have studied the equation of state (EOS) and the equilibrium behavior of a two-component mixture of equal-sized, nonadditive hard disks with an interspecies collision diameter that is larger than that of each component. For this purpose, we have calculated the fifth virial coefficient by evaluating numerically the irreducible cluster integrals by a Monte Carlo method. This information is used to calculate both the virial equation of state and an equation of state based on a resummation of the virial expansion. Then, the fluid-fluid phase coexistence boundaries are determined by integrating the EOS so as to obtain the free energy of the system. Canonical and Gibbs ensemble Monte Carlo simulations over a wide range of nonadditivity are also performed in order to provide a benchmark to the theoretical predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...