Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 658: 354-361, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38113544

ABSTRACT

Nanoparticle addition can expand bioplastic use, as the resultant nanocomposite features e.g., improved mechanical properties. HYPOTHESIS: It is generally hypothesised that the nanoparticle-polymer interaction strength is pivotal to reduce polymer dynamics within the interphasial region and beyond. EXPERIMENTS: Translating nanoscale phenomena to bulk properties is challenging, as traditional techniques that probe interphasial dynamics are limited to well-dispersed systems. Laser speckle imaging (LSI) enabled us to probe interphasial nanoscale dynamics of samples containing aggregated nanoparticles. We relate these LSI-derived relaxation times to bulk rheological properties at a micro scale. FINDINGS: Nanocomposites with well-dispersed PDMS-coated titanium dioxide nanoparticles of ∼100 nm showed higher viscosities than nanocomposites containing aggregated PVP- and PAA-coated nanoparticles of 200-2000 nm. Within the interphasial region, nanoparticle addition increased relaxation times by a factor 101-102, reaching ultraslow relaxations of ∼103 s. While the viscosity increased upon nanoparticle loading, interphasial relaxation times plateaued at 5 wt% for nanocomposites containing well-dispersed nanoparticles and 10 wt% for nanocomposites containing aggregated nanoparticles. Likely, interphasial regions between nanoparticles interact, which is more prominent in systems with well-dispersed nanoparticles and at higher loadings. Our results highlight that, contrary to general belief, nanoparticle dispersion seems of greater importance for mechanical reinforcement than the interaction between polymer and particle.

2.
J Vis Exp ; (199)2023 09 01.
Article in English | MEDLINE | ID: mdl-37677016

ABSTRACT

In recent times, 3D printing technology has revolutionized our ability to design and produce products, but optimizing the print quality can be challenging. The process of extrusion 3D printing involves pressuring molten material through a thin nozzle and depositing it onto previously extruded material. This method relies on bonding between the consecutive layers to create a strong and visually appealing final product. This is no easy task, as many parameters, such as the nozzle temperature, layer thickness, and printing speed, must be fine-tuned to achieve optimal results. In this study, a method for visualizing the polymer dynamics during extrusion is presented, giving insight into the layer bonding process. Using laser speckle imaging, the plastic flow and fusion can be resolved non-invasively, internally, and with high spatiotemporal resolution. This measurement, which is easy to perform, provides an in-depth understanding of the underlying mechanics influencing the final print quality. This methodology was tested with a range of cooling fan speeds, and the results showed increased polymer motion with lower fan speeds and, thus, explained the poor printing quality when the cooling fan was turned off. These findings show that this methodology allows for optimizing the printing settings and understanding the material behavior. This information can be used for the development and testing of novel printing materials or advanced slicing procedures. With this approach, a deeper understanding of extrusion can be built to take 3D printing to the next level.


Subject(s)
Cold Temperature , Diagnostic Imaging , Motion , Polymers , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...