Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38397456

ABSTRACT

Considering the pivotal role of angiogenesis in solid tumor progression, we developed a novel series of quinazoline-thiazole hybrids (SA01-SA07) as antiproliferative and anti-angiogenic agents. Four out of the seven compounds displayed superior antiproliferative activity (IC50 =1.83-4.24 µM) on HepG2 cells compared to sorafenib (IC50 = 6.28 µM). The affinity towards the VEGFR2 kinase domain was assessed through in silico prediction by molecular docking, molecular dynamics studies, and MM-PBSA. The series displayed a high degree of similarity to sorafenib regarding the binding pose within the active site of VEGFR2, with a different orientation of the 4-substituted-thiazole moieties in the allosteric pocket. Molecular dynamics and MM-PBSA evaluations identified SA05 as the hybrid forming the most stable complex with VEGFR2 compared to sorafenib. The impact of the compounds on vascular cell proliferation was assessed on EA.hy926 cells. Six compounds (SA01-SA05, SA07) displayed superior anti-proliferative activity (IC50 = 0.79-5.85 µM) compared to sorafenib (IC50 = 6.62 µM). The toxicity was evaluated on BJ cells. Further studies of the anti-angiogenic effect of the most promising compounds, SA04 and SA05, through the assessment of impact on EA.hy296 motility using a wound healing assay and in ovo potential in a CAM assay compared to sorafenib, led to the confirmation of the anti-angiogenic potential.


Subject(s)
Antineoplastic Agents , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Quinazolines/pharmacology , Quinazolines/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Cell Proliferation , Molecular Structure
2.
Plants (Basel) ; 12(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176897

ABSTRACT

One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290589

ABSTRACT

Aging is an intricate process and an important risk factor in the development and advancement of many disorders [...].

4.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35883903

ABSTRACT

Biomarkers of metabolic syndrome and inflammation are pathophysiological predictors and factors of senescence and age-related diseases. Recent evidence showed that particular diet components, such as walnuts rich in antioxidant bioactive compounds and with a balanced lipid profile, could have positive outcomes on human health. A systematic search in PubMed, EMBASE, Cochrane Library, Scopus, and ClinicalTrials.gov databases was performed to retrieve randomized controlled trials published from the beginning of each database through November 2021, reporting on the outcomes of walnut consumption over 22 metabolic syndrome and inflammatory markers in middle-aged and older adults. The search strategy rendered 17 studies in the final selection, including 11 crossover and 6 parallel trials. The study revealed that walnut-enriched diets had statistically significant decreasing effects for triglyceride, total cholesterol, and LDL cholesterol concentrations on some inflammatory markers and presented no consequences on anthropometric and glycemic parameters. Although further studies and better-designed ones are needed to strengthen these findings, the results emphasize the benefits of including walnuts in the dietary plans of this age group.

5.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36670952

ABSTRACT

Epilobium species are used in Romanian folk medicine as tinctures, tea, or tablets for ameliorating the symptoms of benign prostate hyperplasia (BPH), but scientific-based evidence is scarce for this species or other endemic plants of the same genus. Therefore, the aims of this research were to evaluate the phytochemical profile of five endemic Epilobium species (E. hirsutum L., E. parviflorum Schreb., E. palustre L. E. dodonaei Vill., and E. angustifolium L.) and to assess their in vitro biological activity. For enhanced recovery of polyphenols, a D-optimal experimental plan was developed using Modde software and the optimal working conditions were ultra-turrax-assisted extraction, for 8 min, with 30% ethanol in water. The optimized extracts were obtained from various plant parts and were further characterized by LC-MS analysis, with the major compound being oenothein B. All extracts demonstrated good antioxidant activity, evaluated by DPPH and TEAC assays. The most prominent antimicrobial potency of optimized extracts was displayed against Bacillus cereus, while against Gram-(+) bacteria, a moderate efficacy was observed. Furthermore, anti-cancer, anti-inflammatory, and antioxidant potential were assessed on normal fibroblasts and prostate carcinoma cell lines. From the evaluated optimized extracts, E. angustifolium aerial parts had the highest selectivity toward killing cancerous cells, followed by E. hirsutum aerial parts extract. For the antioxidant effect, E. hirsutum leaves and E. hirstum aerial parts extracts displayed the highest potency, decreasing ROS at the level observed for the positive control. The highest anti-inflammatory potential, based on the IL-6 and IL-8 levels, was displayed by E. dodonaei aerial parts and E. angustifolium leaves extracts. In conclusion, all five endemic species of Epilobium harvested from Romanian flora possess a diverse phytochemical composition, which supports complex biological activities.

6.
Pharmaceutics ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678764

ABSTRACT

The development of hybrid molecules with significant human therapeutic properties is one of the main approaches of pharmaceutical research. One of the most important pharmacophores is the quinazolin-4(3H)-one heterocycle moiety, due to its wide range of biological activities. By its derivatization with polyphenolic compounds, in our previous research, it proved to possess a good antiradical activity of ortho-diphenolic derivatives of quinazolin-4(3H)-one. In this study, we developed two new series of compounds, with an additional phenolic group or with a methyl group on the thioacetohydrazone fragment. The methods used to evaluate the activity of the compounds were radical scavenging, reduction of oxidizing reagents and transition metals' ions chelation assays. Quantum descriptors were also calculated in order to evaluate the influence of substituents and their position on the activity of the compounds. The cytotoxic activity was evaluated using normal human foreskin fibroblast cells (BJ) and two cancerous cell lines, lung adenocarcinoma cells (A549) and prostate carcinoma cells (LNCaP). The results obtained for the pyrogallol derivatives showed a high antioxidant activity compared to ascorbic acid and Trolox. All the synthesized compounds displayed a higher cytotoxicity against the cancerous cell types and a high cytocompatibility with the normal cells. The antioxidant activity was deeply influenced by the addition of the third phenolic group in the synthesized molecules.

7.
Pharmaceutics ; 13(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34959308

ABSTRACT

Increasing the biocompatibility, cellular uptake, and magnetic heating performance of ferromagnetic iron-oxide magnetic nanoparticles (F-MNPs) is clearly required to efficiently induce apoptosis of cancer cells by magnetic hyperthermia (MH). Thus, F-MNPs were coated with silica layers of different thicknesses via a reverse microemulsion method, and their morphological, structural, and magnetic properties were evaluated by multiple techniques. The presence of a SiO2 layer significantly increased the colloidal stability of F-MNPs, which also enhanced their heating performance in water with almost 1000 W/gFe as compared to bare F-MNPs. The silica-coated F-MNPs exhibited biocompatibility of up to 250 µg/cm2 as assessed by Alamar Blues and Neutral Red assays on two cancer cell lines and one normal cell line. The cancer cells were found to internalize a higher quantity of silica-coated F-MNPs, in large endosomes, dispersed in the cytoplasm or inside lysosomes, and hence were more sensitive to in vitro MH treatment compared to the normal ones. Cellular death of more than 50% of the malignant cells was reached starting at a dose of 31.25 µg/cm2 and an amplitude of alternating magnetic field of 30 kA/m at 355 kHz.

8.
Antioxidants (Basel) ; 10(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920912

ABSTRACT

The extraction of bioactive compounds present in walnut (Juglans regia L.) male flowers (WMFs) was performed based on an experimental design using ultrasonic-assisted extraction. Solvent nature, extraction time, and water content were selected as experimental variables, and phenolic, flavonoidic, and condensed tannins contents and antioxidant properties were evaluated. Acetone was the solvent with the highest extraction performance, with the extracts obtained using this solvent displaying an increased concentration of bioactive compounds and increased antioxidant activities. For several extracts with high bioactive content, individual polyphenolic and tocopherolic compounds were evaluated by means of LC-MS and LC-MS/MS. The best extraction conditions for polyphenolic (2.86 mg gallic acid equivalents/g WMF) and tocopherolic compounds (29.4 µg/g WMF) were acetone with 40% water content (N20) and acetone with 20% water content (N15), respectively. Although the total tocopherol concentrations were lower than in other Juglans regia parts, most of the total tocopherol quantity was provided by the highly biologically active δ-tocopherol (84%). Significant quantities of quercetin (101.9 µg/g), hyperoside (2662.9 µg/g), quercitrin (405.7 µg/g), and isoquercitrin (1293.7 µg/g) were determined in WMF (N20). Both extracts inhibited the enzymatic activity of α-glucosidase and tyrosinase; however, an increased inhibition was observed for N20, the extract with the higher polyphenolic content. Conversely, N15 had higher anticancerous activity on the cell lines used, with a moderate selectivity towards the cancerous phenotype being observed for both extracts. At non-cytotoxic concentrations, both extracts displayed good antioxidant activities in cellular cultures, decreasing basal and H2O2-induced oxidative stress. This is the first characterization of both hydrophilic and lipophilic phytochemicals in WMF extracts. The outcomes of our study reveal that walnut male flowers have strong biological activities, thus justifying further research to demonstrate their usefulness in the food, pharmaceutical, and/or cosmetic industries.

9.
Antioxidants (Basel) ; 10(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467612

ABSTRACT

The antitussive, antioxidant, and anti-inflammatory effects of a walnut (Juglans regia L.) septum extract (WSE), rich in bioactive compounds were investigated using the citric acid aerosol-induced cough experimental model in rodents. Wistar male rats were treated orally for three days with distilled water (control), codeine (reference), and WSE in graded doses. On the third day, all rats were exposed to citric acid aerosols, the number of coughs being recorded. Each animal was sacrificed after exposure, and blood and lung tissue samples were collected for histopathological analysis and the assessment of oxidative stress and inflammatory biomarkers. The results of the experiment showed a significant antitussive effect of WSE, superior to codeine. This activity could be due to cellular protective effect and anti-inflammatory effect via the stimulation of the antioxidant enzyme system and the decrease of IL-6 and CXC-R1 concentration in the lung tissue of WSE-treated animals. The antioxidant and anti-inflammatory effects of WSE were confirmed by biochemical assays and histopathological analysis. This is the first scientific study reporting the antitussive effect of walnut septum, a new potential source of non-opioid antitussive drug candidates, and a valuable bioactive by-product that could be used in the treatment of respiratory diseases.

10.
Antioxidants (Basel) ; 9(6)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498441

ABSTRACT

Even though Salvia genus is one of the most known and studied taxa of Lamiaceae family, the knowledge regarding the chemical composition and health-related benefits of some locally used Salvia species (mostly endemic) is still scarce. In this regard, the present work aims to evaluate the chemical profile and potential bioactivities of 70% (v/v) ethanolic extracts obtained from the less-studied S. transsylvanica and S. glutinosa in comparison with S. officinalis. HPLC-PDA analysis revealed the presence of rutin and catechin as the main compounds in the extracts of the three studied species (using the employed HPLC method), whereas the presence of naringenin was highlighted only in S. glutinosa extract. Chlorogenic acid, rutin and quercetin were identified and quantified for the first time in S. transsylvanica extracts. The in vitro antioxidant capacity of each extract was tested through complementary methods (phosphomolybdenum assay, DPPH, ABTS, CUPRAC and FRAP assays), and correlated with the presence of phenolics (especially flavonoids) in high amounts. The neuroprotective and antidiabetic abilities of S. officinalis (the most active as AChE, BChE and α-glucosidase inhibitor), S. glutinosa (the most active as α-amylase inhibitor) and S. transsylvanica were also studied. For each extract it was determined the antimicrobial, antifungal and cytotoxic effects using in vitro assays. The obtained results confirm the potential of S. transsylvanica and S. glutinosa as promising sources of bioactive compounds and as a starting point for further analyses.

11.
Antioxidants (Basel) ; 9(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365793

ABSTRACT

Winery industry by-products have a great reuse potential in the pharmaceutical and cosmetic fields due to their bioactive compounds. This study investigates the phytochemical profile and the bioactivity of Vitis vinifera variety Feteasca neagra tendrils extract (TE) and leaves extract (LE), intended to be used in oral hygiene products recommended in periodontal disease. The evaluation of the phenolic content was performed by colorimetric analysis. Liquid chromatography coupled with mass spectrometry was used to determine the chemical profile of the two extracts obtained from V. vinifera. Moreover, the antioxidant activity of the extracts was determined by spectrophotometric methods, as well as on human gingival fibroblasts (HGF) cell line. The cytocompatibility and cytoprotective effect against nicotine-induced cytotoxicity were tested, as well as the anti-inflammatory and antimicrobial effects. The TE showed higher total polyphenolic content, rich in rutin, compared to the leaves extract that displayed important amounts of isoquercitrin. The antioxidant effect was confirmed by both non-cellular and cellular tests. The cytocompatibility of the extracts was confirmed at a wide range of concentrations. The cytoprotective effect was demonstrated in HGF exposed to cytotoxic doses of nicotine; 300 µg/mL of both tested extracts decreased nicotine toxicity by approximately 20%. When challenged with E. coli polysaccharides, in HGF cells co-exposed to TE and LE, a reduction in the release of proinflammatory cytokines (IL-8, IL-6 and IL-1ß) was observed. The extracts were both able to reduce the levels of reactive oxygen species and inflammatory cytokines, and had notable antimicrobial effects on pathogenic bacteria associated with periodontitis.

12.
Pharmaceutics ; 12(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384665

ABSTRACT

We report the synthesis of magnetite nanoparticles (IOMNPs) using the polyol method performed at elevated temperature (300 °C) and high pressure. The ferromagnetic polyhedral IOMNPs exhibited high saturation magnetizations at room temperature (83 emu/g) and a maximum specific absorption rate (SAR) of 2400 W/gFe in water. The uniform dispersion of IOMNPs in solid matrix led to a monotonous increase of SAR maximum (3600 W/gFe) as the concentration decreased. Cytotoxicity studies on two cell lines (cancer and normal) using Alamar Blues and Neutral Red assays revealed insignificant toxicity of the IOMNPs on the cells up to a concentration of 1000 µg/mL. The cells internalized the IOMNPs inside lysosomes in a dose-dependent manner, with higher amounts of IOMNPs in cancer cells. Intracellular hyperthermia experiments revealed a significant increase in the macroscopic temperatures of the IOMNPs loaded cell suspensions, which depend on the amount of internalized IOMNPs and the alternating magnetic field amplitude. The cancer cells were found to be more sensitive to the intracellular hyperthermia compared to the normal ones. For both cell lines, cells heated at the same macroscopic temperature presented lower viability at higher amplitudes of the alternating magnetic field, indicating the occurrence of mechanical or nanoscale heating effects.

13.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979068

ABSTRACT

Despite recent advances in disease management and prevention, heart failure (HF) prevalence is still high. Hypertension, inflammation and oxidative stress are being investigated as important causative processes in HF. L. barbarum L. polysaccharides (LBPs) are widely used for their anti-inflammatory and antioxidant properties. Thus, the aim of the present study was to evaluate the effects of LBPs on inflammation and oxidative stress markers in a pressure overload-induced HF rat model, surgically induced by abdominal aorta banding in Wistar rats (AAB) (n = 28). Also, control rats (n = 10) were subjected to a sham operation. After echocardiographic confirmation of HF (week 24), AAB rats were divided into three groups: rats treated with LBPs for 12 weeks: 100 mg/kg body weight /day (AAB_100, n = 9), 200 mg/kg body weight /day (AAB_200, n = 7) and no-treatment group (control AAB, n = 12). After 12 weeks of treatment with LBPs, the decline of cardiac function was prevented compared to the control AAB rats. Treatment with 200 mg/kg body weight /day LBPs significantly reduced the inflammation as seen by cytokine levels (IL-6 and TNF-α) and the plasma lipid peroxidation, as seen by malondialdehyde levels. These results suggest that LBPs present anti-inflammatory and antioxidant effects with utility in a HF animal model and encourage further investigation of the cardioprotective effects of these polysaccharides.


Subject(s)
Heart Failure/drug therapy , Heart Failure/metabolism , Lycium/chemistry , Oxidative Stress/drug effects , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Animals , Antioxidants/metabolism , Echocardiography , Interleukin-6/metabolism , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
14.
Antioxidants (Basel) ; 8(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597384

ABSTRACT

Tree nut by-products could contain a wide range of phytochemicals, natural antioxidants, which might be used as a natural source for dietary supplements. The aim of the present study was to evaluate the phenolic and sterolic composition, as well as the antioxidant and other biological activities, of hazelnut involucre (HI) extracts. Experimental designs were developed in order to select the optimum extraction conditions (solvent, temperature, time) using turbo-extraction by Ultra-Turrax for obtaining extracts rich in bioactive compounds. Qualitative and quantitative analyses were performed by LC-MS and LC-MS/MS and they revealed important amounts of individual polyphenols and phytosterols, molecules with antioxidant potential. The richest polyphenolic HI extract with the highest antioxidant activity by TEAC assay was further evaluated by other in vitro antioxidant tests (DPPH, FRAP) and enzyme inhibitory assays. Additionally, the cytotoxic and antioxidant effects of this extract on two cancerous cell lines and on normal cells were tested. This is the first study to analyze the composition of both hydrophilic and lipophilic bioactive compounds in HI extracts. Our findings reveal that this plant by-product presents strong biological activities, justifying further research, and it could be considered an inexpensive source of natural antioxidants for food, pharmaceutical, or cosmetic industry.

15.
Part Fibre Toxicol ; 16(1): 14, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940208

ABSTRACT

BACKGROUND: The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 µm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 µg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS: Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION: In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.


Subject(s)
Blood-Air Barrier/drug effects , Endothelial Cells/drug effects , Metal Nanoparticles/toxicity , Models, Biological , Nanowires/toxicity , Pulmonary Alveoli/drug effects , Silver/toxicity , Air Pollutants , Cell Survival/drug effects , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Dose-Response Relationship, Drug , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression/drug effects , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism
16.
Toxicol In Vitro ; 53: 67-79, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30081072

ABSTRACT

The aim of the current study was to evaluate the responses of a 3D tetra-culture alveolar model cultivated at the air-liquid-interface (ALI) after apical exposure to diesel exhaust particulate matter (DEPM) based on the three-tiered oxidative stress concept. The alveolar model exposed to increasing doses of DEPM (1.75-5 µg/cm2) responded with increasing activity of the anti-oxidant defense mechanisms (Nrf2 translocation, increased gene expression for anti-oxidant proteins and increased HMOX-1 synthesis) (tier 1). Higher exposure generated a proinflammatory response (NF-kB translocation, increased gene expression of pro-inflammatory cytokines and adhesion molecules, and increased IL-6 and IL-8 synthesis) (tier 2) and, finally, the highest doses applied resulted in a decrease of cell viability due to necrosis (extra-cellular release of LDH) or apoptosis (increased expression of the pro-apoptotic genes CASP7 and FAS) (tier 3). Overall, the results of our study demonstrate that the 3D tetra-culture model when directly exposed to DEPM potently generates a realistic response according to the three-tiered oxidative stress concept. Further evaluation and benchmarking against currently used in vivo rodent models is needed to show its suitability, and to serve in the future as an alternative for in vivo studies in the hazard evaluation of inhalable irritants.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Pulmonary Alveoli , Vehicle Emissions/toxicity , Apoptosis/drug effects , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Gene Expression/drug effects , Heme Oxygenase-1/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Membrane Proteins/metabolism , Necrosis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...