Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mutagenesis ; 32(1): 117-126, 2017 01.
Article in English | MEDLINE | ID: mdl-27838631

ABSTRACT

There is serious concern about the potential harmful effects of certain nanomaterials (NMs), on account of their ability to penetrate cell membranes and the increased reactivity that results from their increased surface area compared with bulk chemicals. To assess the safety of NMs, reliable tests are needed. We have investigated the possible genotoxicity of four representative NMs, derived from titanium dioxide, zinc oxide, cerium oxide and silver, in two human cell lines, A549 alveolar epithelial cells and lymphoblastoid TK6 cells. A high-throughput version of the comet assay was used to measure DNA strand beaks (SBs) as well as oxidised purines (converted to breaks with the enzyme formamidopyrimidine DNA glycosylase). In parallel, cytotoxicity was measured with the alamarBlue® assay, and the ability of NM-treated cells to survive was assessed by their colony-forming efficiency. TiO2 and CeO2 NMs were only slightly cytotoxic by the alamarBlue® test, and had no long-term effect on colony-forming efficiency. However, both induced DNA damage at non-cytotoxic concentrations; the damage decreased from 3 to 24-h exposure, except in the case of CeO2-treated A549 cells. ZnO and Ag NMs affected cell survival, and induced high levels of DNA damage at cytotoxic concentrations. At lower concentrations, there was significant damage, which tended to persist over 24 h. The implication is that all four reference metal NMs tested-whether cytotoxic or not-are genotoxic. A full assessment of NM toxicity should include tests on different cell types, different times of incubation and a wide range of (especially non-cytotoxic) concentrations; a test for cell viability should be performed in parallel. Inclusion of Fpg in the comet assay allows detection of indirect genotoxic effects via oxidative stress.


Subject(s)
DNA Damage , Metal Nanoparticles/toxicity , Cell Line , Cell Survival , Comet Assay , DNA/drug effects , DNA-Formamidopyrimidine Glycosylase , Escherichia coli Proteins , Humans , Oxidative Stress/drug effects
2.
Mutagenesis ; 32(1): 193-202, 2017 01.
Article in English | MEDLINE | ID: mdl-27658822

ABSTRACT

Nowadays engineered nanomaterials (ENMs) are increasingly used in a wide range of commercial products and biomedical applications. Despite this, the knowledge of human potential health risk as well as comprehensive biological and toxicological information is still limited. We have investigated the capacity of two frequently used metallic ENMs, nanosilver and magnetite nanoparticles (MNPs), to induce thymidine kinase (Tk +/-) mutations in L5178Y mouse lymphoma cells and transformed foci in Bhas 42 cells. Two types of nanosilver, spherical nanoparticles (AgNM300) and fibrous (AgNM302) nanorods/wires, and MNPs differing in surface modifications [MNPs coated with sodium oleate (SO-MNPs), MNPs coated with SO + polyethylene glycol (SO-PEG-MNPs) and MNPs coated with SO + PEG + poly(lactide-co-glycolic acid) SO-PEG-PLGA-MNPs] were included in this study. Spherical AgNM300 showed neither mutagenic nor carcinogenic potential. In contrast, silver nanorods/wires (AgNM302) increased significantly the number of both gene mutations and transformed foci compared with the control (untreated) cells. Under the same treatment conditions, neither SO-MNPs nor SO-PEG-PLGA-MNPs increased the mutant frequency compared with control cells though an equivocal mutagenic effect was estimated for SO-PEG-MNPs. Although SO-MNPs and SO-PEG-MNPs did not show any carcinogenic potential, SO-PEG-PLGA-MNPs increased concentration dependently the number of transformed foci in Bhas 42 cells compared with the control cells. Our results revealed that fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of MNPs. Considering that both nanosilver and MNPs are prospective ENMs for biomedical applications, further toxicological evaluations are warranted to assess comprehensively the biosafety of these nanomaterials.


Subject(s)
Metal Nanoparticles/toxicity , Mutation , Silver/toxicity , Thymidine Kinase/drug effects , Animals , Carcinogens/pharmacology , Carcinogens/toxicity , Ferric Compounds/pharmacology , Ferric Compounds/toxicity , Metal Nanoparticles/chemistry , Mice , Mutagenicity Tests , Mutagens/pharmacology , Mutagens/toxicity , Silver/pharmacology , Thymidine Kinase/genetics
3.
Nanotoxicology ; 9 Suppl 1: 57-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25923348

ABSTRACT

Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.


Subject(s)
Mutagenicity Tests/methods , Mutagens/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Polymers/toxicity , Animals , Cell Line , Cells, Cultured , Chlorocebus aethiops , Comet Assay , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mutagens/chemistry , Polymers/chemistry , Rats
4.
Nanotoxicology ; 9 Suppl 1: 5-12, 2015 May.
Article in English | MEDLINE | ID: mdl-23875681

ABSTRACT

Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs.


Subject(s)
Materials Testing/methods , Nanomedicine/methods , Nanoparticles/toxicity , Nanostructures/toxicity , Humans
5.
Environ Res ; 134: 39-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042035

ABSTRACT

Climate change is one of the major challenges in the world today. To reduce the amount of CO2 released into the atmosphere, CO2 at major sources, such as power plants, can be captured. Use of aqueous amine solutions is one of the most promising methods for this purpose. However, concerns have been raised regarding its impacts on human health and the environment due to the degradation products, such as nitrosamines and nitramines that may be produced during the CO2 capture process. While several toxicity studies have been performed investigating nitrosamines, little is known about the toxic potential of nitramines. In this study a preliminary screening was performed of the genotoxic and mutagenic potential of nitramines most likely produced during amine based CO2 capture; dimethylnitramine (DMA-NO2), methylnitramine (MA-NO2), ethanolnitramine (MEA-NO2), 2-methyl-2-(nitramino)-1-propanol (AMP-NO2) and piperazine nitramine (PZ-NO2), by the Bacterial Reverse Mutation (Ames) Test, the Cytokinesis Block Micronucleus (CBMN) Assay and the in vitro Single-Cell Gel Electrophoresis (Comet) Assay. MA-NO2 and MEA-NO2 showed mutagenic potential in the Ames test and a weak genotoxic response in the CBMN Assay. AMP-NO2 and PZ-NO2 significantly increased the amount of DNA strand breaks; however, the level of breaks was below background. Most previous studies on nitramines have been performed on DMA-NO2, which in this study appeared to be the least potent nitramine. Our results indicate that it is important to investigate other nitramines that are more likely to be produced during CO2 capture, to ensure that the risk is realistically evaluated.


Subject(s)
Aniline Compounds/toxicity , Mutagens/toxicity , Nitrobenzenes/toxicity , Comet Assay
6.
Toxicol In Vitro ; 27(4): 1205-10, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23416265

ABSTRACT

Amines have potential to be used in CO2 capture and storage (CCS) technology, but as they can be released into the environment and be degraded into more toxic compounds, such as nitrosamines and nitramines, there have been concerns about their negative impact on human health. We investigated the potential toxic effects from acute exposure to dimethylnitramine (DMA-NO2), methylnitramine (MA-NO2), ethanolnitramine (MEA-NO2) and 2-methyl-2-(nitroamino)-1-propanol (AMP-NO2). The eye irritation, and skin sensitization, irritation and corrosion potential of these substances have been evaluated in vitro using the Bovine Corneal Opacity and Permeability (BCOP) assay, VITOSENS® assay, Reconstructed Human Epidermis (RHE) skin irritation test and Corrositex Skin corrosion test, respectively. Exposure to DMA-NO2 induced a mild eye irritation response, while MA-NO2, MEA-NO2 and AMP-NO2 were shown to be very severe eye irritants. MA-NO2 and MEA-NO2 were tested for skin sensitization and found to be non-sensitizers to the skin. In addition, none of the four test substances was irritant or corrosive to the skin.


Subject(s)
Aniline Compounds/toxicity , Dimethylamines/toxicity , Eye/drug effects , Nitrobenzenes/toxicity , Skin/drug effects , Animals , Cattle , Corneal Opacity/chemically induced , Cyclic AMP Response Element Modulator/genetics , Eye/anatomy & histology , Eye/metabolism , Gene Expression Regulation/drug effects , Humans , In Vitro Techniques , Permeability/drug effects , Receptors, CCR2/genetics , Skin/metabolism , Skin Tests
7.
Methods Mol Biol ; 948: 1-12, 2013.
Article in English | MEDLINE | ID: mdl-23070759

ABSTRACT

Among beneficial applications of nanotechnology, nanomedicine offers perhaps the greatest potential for improving human conditions and quality of life. Engineered nanomaterials (ENMs), with their unique properties, have potential to improve therapy of many human disorders. The properties that make ENMs so useful could also lead to unintentional adverse health effects. Challenges arising from physicochemical properties of ENMs, their characterization, exposure, and hazard assessment and other key issues of ENM safety are discussed. There is still scant knowledge about ENM cellular uptake, transport across biological barriers, distribution within the body, and possible mechanisms of toxicity. The safety of ENMs should be tested to minimize possible risk before the application. However, existing toxicity tests need to be adapted to fit to the unique features related to the nanosized material and appropriate controls and reference material should be considered.


Subject(s)
Nanostructures/toxicity , Toxicity Tests/methods , Animals , Biological Transport , Cytotoxins/metabolism , Cytotoxins/toxicity , Environmental Exposure/adverse effects , Humans , Mutagenicity Tests
8.
Mutagenesis ; 27(6): 759-69, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940646

ABSTRACT

Among nanomaterials, silver nanoparticles (AgNPs) have the broadest and most commercial applications due to their antibacterial properties, highlighting the need for exploring their potential toxicity and underlying mechanisms of action. Our main aim was to investigate whether AgNPs exert toxicity by inducing oxidative damage to DNA in human kidney HEK 293 cells. In addition, we tested whether this damage could be counteracted by plant extracts containing phytochemicals such as swertiamarin, mangiferin and homoorientin with high antioxidant abilities. We show that AgNPs (20 nm) are taken up by cells and localised in vacuoles and cytoplasm. Exposure to 1, 25 or 100 µg/ml AgNPs leads to a significant dose-dependent increase in oxidised DNA base lesions (8-oxo-7,8-dihydroguanine or 8-oxoG) detected by the comet assay after incubation of nucleoids with 8-oxoG DNA glycosylase. Oxidised DNA base lesions and strand breaks caused by AgNPs were diminished by aqueous and methanolic extracts from both haulm and flower of Gentiana asclepiadea.


Subject(s)
DNA Damage/drug effects , Gentiana/chemistry , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Silver/toxicity , Antioxidants/pharmacology , Cell Proliferation , Chromatography, High Pressure Liquid , Comet Assay , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , HEK293 Cells , Humans , Metal Nanoparticles/chemistry , Methanol/metabolism , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...