Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chaos ; 34(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437872

ABSTRACT

We use the Toda chain model to demonstrate that numerical simulation of integrable Hamiltonian dynamics using time discretization destroys integrability and induces dynamical chaos. Specifically, we integrate this model with various symplectic integrators parametrized by the time step τ and measure the Lyapunov time TΛ (inverse of the largest Lyapunov exponent Λ). A key observation is that TΛ is finite whenever τ is finite but diverges when τ→0. We compare the Toda chain results with the nonintegrable Fermi-Pasta-Ulam-Tsingou chain dynamics. In addition, we observe a breakdown of the simulations at times TB≫TΛ due to certain positions and momenta becoming extremely large ("Not a Number"). This phenomenon originates from the periodic driving introduced by symplectic integrators and we also identify the concrete mechanism of the breakdown in the case of the Toda chain.

2.
Chaos ; 33(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38060770

ABSTRACT

We study Anderson localization in discrete-time quantum map dynamics in one dimension with nearest-neighbor hopping strength θ and quasienergies located on the unit circle. We demonstrate that strong disorder in a local phase field yields a uniform spectrum gaplessly occupying the entire unit circle. The resulting eigenstates are exponentially localized. Remarkably this Anderson localization is universal as all eigenstates have one and the same localization length Lloc. We present an exact theory for the calculation of the localization length as a function of the hopping, 1/Lloc=|ln⁡(|sin⁡(θ)|)|, which is tunable between zero and infinity by variation of the hopping θ.

3.
Phys Rev Lett ; 130(19): 199901, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243664

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.128.134102.

4.
Phys Rev E ; 108(6): L062301, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243444

ABSTRACT

We characterize thermalization slowing down of Josephson junction networks in one, two, and three spatial dimensions for systems with hundreds of sites by computing their entire Lyapunov spectra. The ratio of Josephson coupling E_{J} to energy density h controls two different universality classes of thermalization slowing down, namely, the weak-coupling regime, E_{J}/h→0, and the strong-coupling regime, E_{J}/h→∞. We analyze the Lyapunov spectrum by measuring the largest Lyapunov exponent and by fitting the rescaled spectrum with a general ansatz. We then extract two scales: the Lyapunov time (inverse of the largest exponent) and the exponent for the decay of the rescaled spectrum. The two universality classes, which exist irrespective of network dimension, are characterized by different ways the extracted scales diverge. The universality class corresponding to the weak-coupling regime allows for the coexistence of chaos with a large number of near-conserved quantities and is shown to be characterized by universal critical exponents, in contrast with the strong-coupling regime. We expect our findings, which we explain using perturbation theory arguments, to be a general feature of diverse Hamiltonian systems.

5.
Chaos ; 32(6): 063113, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35778154

ABSTRACT

We study thermalization of weakly nonintegrable nonlinear unitary lattice dynamics. We identify two distinct thermalization regimes close to the integrable limits of either linear dynamics or disconnected lattice dynamics. For weak nonlinearity, the almost conserved actions correspond to extended observables which are coupled into a long-range network. For weakly connected lattices, the corresponding local observables are coupled into a short-range network. We compute the evolution of the variance σ ( T ) of finite time average distributions for extended and local observables. We extract the ergodization time scale T which marks the onset of thermalization, and determine the type of network through the subsequent decay of σ ( T ). We use the complementary analysis of Lyapunov spectra [M. Malishava and S. Flach, Phys. Rev. Lett. 128, 134102 (2022)] and compare the Lyapunov time T with T. We characterize the spatial properties of the tangent vector and arrive at a complete classification picture of weakly nonintegrable macroscopic thermalization dynamics.

6.
Phys Rev Lett ; 128(13): 134102, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35426693

ABSTRACT

We propose a novel framework to characterize the thermalization of many-body dynamical systems close to integrable limits using the scaling properties of the full Lyapunov spectrum. We use a classical unitary map model to investigate macroscopic weakly nonintegrable dynamics beyond the limits set by the KAM regime. We perform our analysis in two fundamentally distinct long-range and short-range integrable limits which stem from the type of nonintegrable perturbations. Long-range limits result in a single parameter scaling of the Lyapunov spectrum, with the inverse largest Lyapunov exponent being the only diverging control parameter and the rescaled spectrum approaching an analytical function. Short-range limits result in a dramatic slowing down of thermalization which manifests through the rescaled Lyapunov spectrum approaching a non-analytic function. An additional diverging length scale controls the exponential suppression of all Lyapunov exponents relative to the largest one.

7.
Phys Rev E ; 104(1-1): 014218, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412341

ABSTRACT

Weakly nonintegrable many-body systems can restore ergodicity in distinctive ways depending on the range of the interaction network in action space. Action resonances seed chaotic dynamics into the networks. Long-range networks provide well connected resonances with ergodization controlled by the individual resonance chaos time scales. Short-range networks instead yield a dramatic slowing down of ergodization in action space, and lead to rare resonance diffusion. We use Josephson junction chains as a paradigmatic study case. We exploit finite time average distributions to characterize the thermalizing dynamics of actions. We identify an action resonance diffusion regime responsible for the slowing down. We extract the diffusion coefficient of that slow process and measure its dependence on the proximity to the integrable limit. Independent measures of correlation functions confirm our findings. The observed fragile diffusion is relying on weakly chaotic dynamics in spatially isolated action resonances. It can be suppressed, and ergodization delayed, by adding weak action noise, as a proof of concept.

8.
Phys Rev Lett ; 126(7): 073901, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666481

ABSTRACT

We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields.

9.
Phys Rev E ; 100(3-1): 032217, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639954

ABSTRACT

Integrable many-body systems are characterized by a complete set of preserved actions. Close to an integrable limit, a nonintegrable perturbation creates a coupling network in action space which can be short or long ranged. We analyze the dynamics of observables which become the conserved actions in the integrable limit. We compute distributions of their finite time averages and obtain the ergodization time scale T_{E} on which these distributions converge to δ distributions. We relate T_{E} to the statistics of fluctuation times of the observables, which acquire fat-tailed distributions with standard deviations σ_{τ}^{+} dominating the means µ_{τ}^{+} and establish that T_{E}∼(σ_{τ}^{+})^{2}/µ_{τ}^{+}. The Lyapunov time T_{Λ} (the inverse of the largest Lyapunov exponent) is then compared to the above time scales. We use a simple Klein-Gordon chain to emulate long- and short-range coupling networks by tuning its energy density. For long-range coupling networks T_{Λ}≈σ_{τ}^{+}, which indicates that the Lyapunov time sets the ergodization time, with chaos quickly diffusing through the coupling network. For short-range coupling networks we observe a dynamical glass, where T_{E} grows dramatically by many orders of magnitude and greatly exceeds the Lyapunov time, which satisfies T_{Λ}≲µ_{τ}^{+}. This effect arises from the formation of highly fragmented inhomogeneous distributions of chaotic groups of actions, separated by growing volumes of nonchaotic regions. These structures persist up to the ergodization time T_{E}.

10.
Phys Rev Lett ; 122(5): 054102, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30822006

ABSTRACT

Models of classical Josephson junction chains turn integrable in the limit of large energy densities or small Josephson energies. Close to these limits the Josephson coupling between the superconducting grains induces a short-range nonintegrable network. We compute distributions of finite-time averages of grain charges and extract the ergodization time T_{E} which controls their convergence to ergodic δ distributions. We relate T_{E} to the statistics of fluctuation times of the charges, which are dominated by fat tails. T_{E} is growing anomalously fast upon approaching the integrable limit, as compared to the Lyapunov time T_{Λ}-the inverse of the largest Lyapunov exponent-reaching astonishing ratios T_{E}/T_{Λ}≥10^{8}. The microscopic reason for the observed dynamical glass is rooted in a growing number of grains evolving over long times in a regular almost integrable fashion due to the low probability of resonant interactions with the nearest neighbors. We conjecture that the observed dynamical glass is a generic property of Josephson junction networks irrespective of their space dimensionality.

11.
Phys Rev Lett ; 122(4): 040501, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768296

ABSTRACT

We use a novel unitary map toolbox-discrete-time quantum walks originally designed for quantum computing-to implement ultrafast computer simulations of extremely slow dynamics in a nonlinear and disordered medium. Previous reports on wave packet spreading in Gross-Pitaevskii lattices observed subdiffusion with the second moment m_{2}∼t^{1/3} (with time in units of a characteristic scale t_{0}) up to the largest computed times of the order of 10^{8}. A fundamental and controversially debated question-whether this process can continue ad infinitum, or has to slow down-stands unresolved. Current experimental devices are not capable to even reach 1/10^{4} of the reported computational horizons. With our toolbox, we outperform previous computational results and observe that the universal subdiffusion persists over an additional four decades reaching "astronomic" times 2×10^{12}. Such a dramatic extension of previous computational horizons suggests that subdiffusion is universal, and that the toolbox can be efficiently used to assess other hard computational many-body problems.

12.
Phys Rev Lett ; 120(18): 184101, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775355

ABSTRACT

The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.

13.
Phys Rev Lett ; 121(26): 263902, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636121

ABSTRACT

Flatband systems typically host "compact localized states" (CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice (LL), such conventional localized flatband states are found to be inherently incomplete, with the missing modes manifested as extended line states that form noncontractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially tailored boundaries and, thereby, directly observe the unusually extended flatband line states. Such unconventional line states cannot be expressed as a linear combination of the previously observed boundary-independent bulk CLS but rather arise from the nontrivial real-space topology. The robustness of the line states to imperfect excitation conditions is discussed, and their potential applications are illustrated.

14.
Sci Rep ; 7: 40860, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102302

ABSTRACT

We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value.

15.
Sci Rep ; 7: 41139, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28117347

ABSTRACT

We study the fate of dynamical localization of two quantum kicked rotors with contact interaction, which relates to experimental realizations of the rotors with ultra-cold atomic gases. A single kicked rotor is known to exhibit dynamical localization, which takes place in momentum space. The contact interaction affects the evolution of the relative momentum k of a pair of interacting rotors in a non-analytic way. Consequently the evolution operator U is exciting large relative momenta with amplitudes which decay only as a power law 1/k4. This is in contrast to the center-of-mass momentum K for which the amplitudes excited by U decay superexponentially fast with K. Therefore dynamical localization is preserved for the center-of-mass momentum, but destroyed for the relative momentum for any nonzero strength of interaction.

16.
Sci Rep ; 6: 33699, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27640818

ABSTRACT

We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal dynamics enabling directed power transport functionality.

17.
Phys Rev Lett ; 116(24): 245301, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367392

ABSTRACT

Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.

18.
Phys Rev Lett ; 113(23): 236403, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526142

ABSTRACT

Flatband networks are characterized by the coexistence of dispersive and flatbands. Flatbands (FBs) are generated by compact localized eigenstates (CLSs) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLSs without additional renormalization, yet with surprising consequences: (i) states are expelled from the FB energy E_{FB}, (ii) the localization length of eigenstates vanishes as ξ∼1/ln(E-E_{FB}), (iii) the density of states diverges logarithmically (particle-hole symmetry) and algebraically (no particle-hole symmetry), and (iv) mobility edge curves show algebraic singularities at E_{FB}. Our analytical results are based on perturbative expansions of the CLSs and supported by numerical data in one and two lattice dimensions.

19.
Article in English | MEDLINE | ID: mdl-25314507

ABSTRACT

We study spreading wave packets in a disordered nonlinear ladder with broken time-reversal symmetry induced by synthetic gauge fields. The model describes the dynamics of interacting bosons in a disordered and driven optical ladder within a mean-field approximation. The second moment of the wave packet m(2)=gt(α) grows subdiffusively with the universal exponent α≃1/3 similar to the time-reversal case. However, the prefactor g is strongly modified by the field strength and shows a nonmonotonic dependence. For a weak field, the prefactor increases since time-reversal enhanced backscattering is suppressed. For strong fields the spectrum of the linear wave equation reduces the localization length through the formation of gaps and narrow bands. Consequently the prefactor for the subdiffusive spreading law is suppressed.


Subject(s)
Nonlinear Dynamics , Diffusion
20.
Article in English | MEDLINE | ID: mdl-23944532

ABSTRACT

In the absence of confinement, localization of waves takes place due to randomness or nonlinearity and relies on their phase coherence. We quantitatively probe the sensitivity of localized wave packets to random phase fluctuations and confirm the necessity of phase coherence for localization. Decoherence resulting from a dynamical random environment leads to diffusive spreading and destroys linear and nonlinear localization. We find that maximal spreading is achieved for optimal phase fluctuation characteristics, which is a consequence of the competition between diffusion due to decoherence and ballistic transport within the mean free path distance.

SELECTION OF CITATIONS
SEARCH DETAIL
...