Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 131(1): 187-200.e1-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23006545

ABSTRACT

BACKGROUND: Allergen exposure at lung and gut mucosae can lead to aberrant T(H)2 immunity and allergic disease. The epithelium-associated cytokines thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 are suggested to be important for the initiation of these responses. OBJECTIVE: We sought to investigate the contributions of TSLP, IL-25, and IL-33 in the development of allergic disease to the common allergens house dust mite (HDM) or peanut. METHODS: Neutralizing antibodies or mice deficient in TSLP, IL-25, or IL-33 signaling were exposed to HDM intranasally or peanut intragastrically, and immune inflammatory and physiologic responses were evaluated. In vitro assays were performed to examine specific dendritic cell (DC) functions. RESULTS: We showed that experimental HDM-induced allergic asthma and food allergy and anaphylaxis to peanut were associated with TSLP production but developed independently of TSLP, likely because these allergens functionally mimicked TSLP inhibition of IL-12 production and induction of OX40 ligand (OX40L) on DCs. Blockade of OX40L significantly lessened allergic responses to HDM or peanut. Although IL-25 and IL-33 induced OX40L on DCs in vitro, only IL-33 signaling was necessary for intact allergic immunity, likely because of its superior ability to induce DC OX40L and expand innate lymphoid cells in vivo. CONCLUSION: These data identify a nonredundant, IL-33-driven mechanism initiating T(H)2 responses to the clinically relevant allergens HDM and peanut. Our findings, along with those in infectious and transgenic/surrogate allergen systems, favor a paradigm whereby multiple molecular pathways can initiate T(H)2 immunity, which has implications for the conceptualization and manipulation of these responses in health and disease.


Subject(s)
Allergens/immunology , Arachis/immunology , Hypersensitivity/immunology , Interleukins/immunology , Pyroglyphidae/immunology , Thymus Gland/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gastrointestinal Tract/immunology , Humans , Hypersensitivity/metabolism , Interleukin-33 , Interleukin-4/immunology , Interleukin-4/metabolism , Lung/immunology , Lung/metabolism , Mice , OX40 Ligand/immunology , OX40 Ligand/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , STAT6 Transcription Factor/metabolism , Signal Transduction , Stromal Cells/immunology , Stromal Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Thymus Gland/cytology
2.
J Allergy Clin Immunol ; 127(6): 1552-61.e1, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21624619

ABSTRACT

BACKGROUND: Food-induced anaphylaxis is often a severe allergic reaction characterized by multiorgan dysfunction and a potentially fatal outcome. OBJECTIVES: We sought to investigate the relative contribution of immunoglobulin-dependent effector pathways to anaphylactic responses to food (ie, peanut). METHODS: Wild-type and various mutant mice were sensitized with peanut protein and cholera toxin by means of oral gavage weekly for 4 weeks. Mice were subjected to different cellular depletion and Fc receptor blocking strategies before challenge with peanut 1 week after the last sensitization. RESULTS: Our data indicate that pathways other than the classical mast cell (MC)-IgE pathway contribute to the full spectrum of anaphylactic reactions to peanut. We show that the single deletion of MCs, basophils, or phagocytes (ie, macrophages) prevents the most significant clinical outcome: death. Remarkably, the combined deficiency of MCs and phagocytes, but not MCs and basophils, averted nearly all clinical and physiological signs of anaphylaxis. Furthermore, blockade of both IgE and IgG1 signaling was necessary to abolish anaphylactic responses to peanut. Although MC responses occurred through IgE and IgG1, phagocyte responses were fully mediated through IgG1. CONCLUSIONS: Peanut-induced anaphylaxis is a process that involves the concerted action of multiple immune effector pathways, and thus interventions targeting a single pathway (eg, MC-IgE) might not be sufficient to fully prevent anaphylactic responses.


Subject(s)
Anaphylaxis/immunology , Peanut Hypersensitivity/immunology , Anaphylaxis/etiology , Anaphylaxis/prevention & control , Animals , Basophils/immunology , Female , Immunoglobulin E/metabolism , Immunoglobulin G/metabolism , Macrophages/immunology , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Peanut Hypersensitivity/etiology , Receptors, IgG/metabolism , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...