Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunohorizons ; 7(5): 307-309, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37159005

ABSTRACT

Infectious particles can be shared through aerosols and droplets formed as the result of normal respiration. Whether Abs within the nasal/oral fluids can similarly be shared between hosts has not been investigated. The circumstances of the SARS-CoV-2 pandemic facilitated a unique opportunity to fully examine this provocative idea. The data we show from human nasal swabs provides evidence for the aerosol transfer of Abs between immune and nonimmune hosts.


Subject(s)
COVID-19 , Humans , Immunity, Humoral , SARS-CoV-2 , Respiratory Aerosols and Droplets , Pandemics
2.
PLoS One ; 18(3): e0279144, 2023.
Article in English | MEDLINE | ID: mdl-36928885

ABSTRACT

Early Plasmodium falciparum and P. vivax infection requires parasite replication within host hepatocytes, referred to as liver stage (LS). However, limited understanding of infection dynamics in human LS exists due to species-specificity challenges. Reported here is a reproducible, easy-to-manipulate, and moderate-cost in vivo model to study human Plasmodium LS in mice; the ectopic huLiver model. Ectopic huLiver tumors were generated through subcutaneous injection of the HC-04 cell line and shown to be infectible by both freshly dissected sporozoites and through the bite of infected mosquitoes. Evidence for complete LS development was supported by the transition to blood-stage infection in mice engrafted with human erythrocytes. Additionally, this model was successfully evaluated for its utility in testing antimalarial therapeutics, as supported by primaquine acting as a causal prophylactic against P. falciparum. Presented here is a new platform for the study of human Plasmodium infection with the potential to aid in drug discovery.


Subject(s)
Communicable Diseases , Liver Diseases , Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium , Mice , Animals , Humans , Liver/parasitology , Malaria/drug therapy , Malaria, Falciparum/parasitology , Hepatocytes/parasitology , Plasmodium falciparum , Sporozoites
3.
J Cell Mol Med ; 26(13): 3675-3686, 2022 07.
Article in English | MEDLINE | ID: mdl-35665597

ABSTRACT

Primaquine (PQ) and Tafenoquine (TQ) are clinically important 8-aminoquinolines (8-AQ) used for radical cure treatment of P. vivax infection, known to target hepatic hypnozoites. 8-AQs can trigger haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd), yet the mechanisms of haemolytic toxicity remain unknown. To address this issue, we used a humanized mouse model known to predict haemolytic toxicity responses in G6PDd human red blood cells (huRBCs). To evaluate the markers of eryptosis, huRBCs were isolated from mice 24-48 h post-treatment and analysed for effects on phosphatidylserine (PS), intracellular reactive oxygen species (ROS) and autofluorescence. Urinalysis was performed to evaluate the occurrence of intravascular and extravascular haemolysis. Spleen and liver tissue harvested at 24 h and 5-7 days post-treatment were stained for the presence of CD169+ macrophages, F4/80+ macrophages, Ter119+ mouse RBCs, glycophorin A+ huRBCs and murine reticulocytes (muRetics). G6PDd-huRBCs from PQ/TQ treated mice showed increased markers for eryptosis as early as 24 h post-treatment. This coincided with an early rise in levels of muRetics. Urinalysis revealed concurrent intravascular and extravascular haemolysis in response to PQ/TQ. Splenic CD169+ macrophages, present in all groups at day 1 post-dosing were eliminated by days 5-7 in PQ/TQ treated mice only, while liver F4/80 macrophages and iron deposits increased. Collectively, our data suggest 8-AQ treated G6PDd-huRBCs have early physiological responses to treatment, including increased markers for eryptosis indicative of oxidative stress, resulting in extramedullary haematopoiesis and loss of splenic CD169+ macrophages, prompting the liver to act as the primary site of clearance.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Aminoquinolines/toxicity , Animals , Disease Models, Animal , Glucosephosphate Dehydrogenase Deficiency/complications , Hemolysis , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Mice , Primaquine/therapeutic use
4.
Cancers (Basel) ; 14(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35267611

ABSTRACT

Breast ductal carcinoma in situ (DCIS) is clinically challenging, featuring high diagnosis rates and few targeted therapies. Expression/signaling from junctional adhesion molecule-A (JAM-A) has been linked to poor prognosis in invasive breast cancers, but its role in DCIS is unknown. Since progression from DCIS to invasive cancer has been linked with overexpression of the human epidermal growth factor receptor-2 (HER2), and JAM-A regulates HER2 expression, we evaluated JAM-A as a therapeutic target in DCIS. JAM-A expression was immunohistochemically assessed in patient DCIS tissues. A novel JAM-A antagonist (JBS2) was designed and tested alone/in combination with the HER2 kinase inhibitor lapatinib, using SUM-225 cells in vitro and in vivo as validated DCIS models. Murine tumors were proteomically analyzed. JAM-A expression was moderate/high in 96% of DCIS patient tissues, versus 23% of normal adjacent tissues. JBS2 bound to recombinant JAM-A, inhibiting cell viability in SUM-225 cells and a primary DCIS culture in vitro and in a chick embryo xenograft model. JBS2 reduced tumor progression in in vivo models of SUM-225 cells engrafted into mammary fat pads or directly injected into the mammary ducts of NOD-SCID mice. Preliminary proteomic analysis revealed alterations in angiogenic and apoptotic pathways. High JAM-A expression in aggressive DCIS lesions and their sensitivity to treatment by a novel JAM-A antagonist support the viability of testing JAM-A as a novel therapeutic target in DCIS.

5.
J Control Release ; 331: 213-227, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33378692

ABSTRACT

Primaquine and tafenoquine are the two 8-aminoquinoline (8-AQ) antimalarial drugs approved for malarial radical cure - the elimination of liver stage hypnozoites after infection with Plasmodium vivax. A single oral dose of tafenoquine leads to high efficacy against intra-hepatocyte hypnozoites after efficient first pass liver uptake and metabolism. Unfortunately, both drugs cause hemolytic anemia in G6PD-deficient humans. This toxicity prevents their mass administration without G6PD testing given the approximately 400 million G6PD deficient people across malarial endemic regions of the world. We hypothesized that liver-targeted delivery of 8-AQ prodrugs could maximize liver exposure and minimize erythrocyte exposure to increase their therapeutic window. Primaquine and tafenoquine were first synthesized as prodrug vinyl monomers with self-immolative hydrolytic linkers or cathepsin-cleavable valine-citrulline peptide linkers. RAFT polymerization was exploited to copolymerize these prodrug monomers with hepatocyte-targeting GalNAc monomers. Pharmacokinetic studies of released drugs after intravenous administration showed that the liver-to-plasma AUC ratios could be significantly improved, compared to parent drug administered orally. Single doses of the liver-targeted, enzyme-cleavable tafenoquine polymer were found to be as efficacious as an equivalent dose of the oral parent drug in the P. berghei causal prophylaxis model. They also elicited significantly milder hemotoxicity in the humanized NOD/SCID mouse model engrafted with red blood cells from G6PD deficient donors. The clinical application is envisioned as a single subcutaneous administration, and the lead tafenoquine polymer also showed excellent bioavailability and liver-to-blood ratios exceeding the IV administered polymer. The liver-targeted tafenoquine polymers warrant further development as a single-dose therapeutic via the subcutaneous route with the potential for broader patient administration without a requirement for G6PD diagnosis.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Prodrugs , Aminoquinolines , Animals , Liver , Malaria/drug therapy , Malaria, Vivax/drug therapy , Mice , Mice, Inbred NOD , Mice, SCID , Polymers/therapeutic use , Primaquine , Prodrugs/therapeutic use
6.
Org Lett ; 21(9): 3281-3285, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31017793

ABSTRACT

Dehydroalanine (ΔAla) is a highly electrophilic residue that can react efficiently with sulfur nucleophiles to furnish cysteinyl analogues. Herein, we report an efficient synthesis of N-terminal cysteinyl thioesters, suitable for S, N-acyl transfer, based on ß,γ-C,S thiol-Michael addition. Both ionic and radical-based methodologies were found to be efficient for this process.

7.
J Biol Chem ; 287(26): 22408-17, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22570471

ABSTRACT

Cancer cells undergo mitosis more frequently than normal cells and thus have increased metabolic needs, which in turn lead to higher than normal reactive oxygen species (ROS) production. Higher ROS production increases cancer cell dependence on ROS scavenging systems to balance the increased ROS. Selectively modulating intracellular ROS in cancers by exploiting cancer dependence on ROS scavenging systems provides a useful therapeutic approach. Essential to developing these therapeutic strategies is to maintain physiologically low ROS levels in normal tissues while inducing ROS in cancer cells. GMX1778 is a specific inhibitor of nicotinamide phosphoribosyltransferase, a rate-limiting enzyme required for the regeneration of NAD(+) from nicotinamide. We show that GMX1778 increases intracellular ROS in cancer cells by elevating the superoxide level while decreasing the intracellular NAD(+) level. Notably, GMX1778 treatment does not induce ROS in normal cells. GMX1778-induced ROS can be diminished by adding nicotinic acid (NA) in a NA phosphoribosyltransferase 1 (NAPRT1)-dependent manner, but NAPRT1 is lost in a high frequency of glioblastomas, neuroblastomas, and sarcomas. In NAPRT1-deficient cancer cells, ROS induced by GMX1778 was not susceptible to treatment with NA. GMX1778-mediated ROS induction is p53-dependent, suggesting that the status of both p53 and NAPRT1 might affect tumor apoptosis, as determined by annexin-V staining. However, as determined by colony formation, GMX1778 long term cytotoxicity in cancer cells was only prevented by the addition of NA to NAPRT1-expressing cells. Exposure to GMX1778 may be a novel way of inducing ROS selectively in NAPRT1-negative tumors without inducing cytotoxic ROS in normal tissue.


Subject(s)
Apoptosis , Cyanides/pharmacology , Guanidines/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pentosyltransferases/metabolism , Reactive Oxygen Species , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , Glutathione/metabolism , Humans , NADP/metabolism , Niacinamide/metabolism , Oxidation-Reduction , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...