Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689967

ABSTRACT

Insect flight is a complex trait involved in different behaviors, from the search for sexual partners, food, or breeding sites. Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity, such as low values of wing loading or high values of wing:thorax ratio and wing-aspect ratio. However, few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila. This work aimed to study morphological traits in males and females of two pairs of sibling species: Drosophila buzzatii Patterson and Wheeler-Drosophila koeferae Fontdevila and Wasserman, and Drosophila melanogaster Meigen-Drosophila simulans Sturtevant, and to analyze its relationship with flight. We detected the highest proportion of flight time in D. koepferae and D. simulans compared to D. buzzatii and D. melanogaster, respectively. Our results also revealed sexual dimorphism, with males exhibiting a higher proportion of flight time than females. Surprisingly, we did not find a general pattern to explain the relationship between morphology and the proportion of flight time because associations varied depending upon the analyses (considering all groups together or each sex-species combination separately). Moreover, these associations explained a low percentage of variation, suggesting that other nonmorphological components related to flight, such as physiological variables, should be taken into account. This work allowed us to show the variability and complexity of an aspect of flight, suggesting that the adaptive role of the morphological traits studied might have been overestimated.

2.
Infect Dis Poverty ; 9(1): 107, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32736584

ABSTRACT

BACKGROUND: As no globally accepted dengue vaccines or specific antiviral therapies are currently available, controlling breeding sites of Aedes aegypti is a target to prevent dengue outbreaks. The present study aimed to characterize outdoor artificial breeding sites in urban households using an exhaustive classification system. METHODS: A cross-sectional entomological survey was carried out in Colón city, Entre Ríos, Argentina, using a two-stage stratified sampling design during March and April 2014. The city was stratified given the degree of urbanization of each block, and blocks and households were randomly selected. All outdoor containers with water were inspected, and the presence of immature mosquitoes was recorded. Containers were classified according to physical, functional, and location attributes. Generalized linear mixed models were applied to take into account the aggregated nature of the data (containers in houses and houses in blocks). RESULTS: Overall, 207 houses were inspected. Out of 522 containers with water, 25% had immatures of Ae. aegypti (7336). In adjusted models, the abundance of immatures was higher in containers with increasing opening surface and volume, without roof cover, exposed to shadow, out of use or with functions related to gardening activities, household chores, water storage, or construction. At block level, immatures abundance was positively associated with the degree of urbanization. CONCLUSIONS: We detected high immatures abundance in containers associated with water utilization. This suggests that containers involved in these activities, whether directly (e.g., water storage) or indirectly (e.g., incomplete water drainage in the last use), are susceptible to present a high immature abundance. Although our results indicate the importance of the type of use over the type of container, we encourage the use of both classification criteria for artificial breeding sites of mosquitoes, mainly because these are complementary. Additionally, generalized linear mixed models allowed us to analyse predictor variables at different scales (container/house/block) and consider the lack of independence between observations. An exhaustive analysis of artificial breeding sites that use this analytical methodology can lead to new information that could help designing more appropriate tools for dengue surveillance and control.


Subject(s)
Aedes/physiology , Breeding , Water Microbiology , Animals , Argentina , Cross-Sectional Studies , Dengue/parasitology , Ecosystem , Housing , Humans , Linear Models , Urban Population
3.
Insect Sci ; 27(5): 1090-1100, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31271509

ABSTRACT

It has been demonstrated that phenotypic plasticity and genotype by environment interaction are important for coping with new and heterogeneous environments during invasions. Zaprionus indianus Gupta (Diptera: Drosophilidae) is an Afrotropical invasive fly species introduced to the South American continent in 1999. This species is generalist and polyphagous, since it develops and feeds in several different fruit species. These characteristics of Z. indianus suggest that phenotypic plasticity and genotype by environment interaction may be important in this species invasion process. In this sense, our aim was to investigate the role of genetic variation for phenotypic plasticity (genotype by environment interaction) in Z. indianus invasion of the South American continent. Specifically, we quantified quantitative genetic variation and genotype by environment interactions of morphological and life history traits in different developmental environments, that is, host fruits. This was done in different populations in the invasive range of Z. indianus in Argentina. Results showed that Z. indianus populations have considerable amounts of quantitative genetic variation. Also, genotype by environment interactions was detected for the different traits analyzed in response to the different developmental environments. Interestingly, the amounts and patterns of these parameters differed between populations. We interpreted these results as the existence of differences in evolutionary potential between populations that have an important role in the short- and long-term success of the Z. indianus invasion process.


Subject(s)
Adaptation, Physiological , Drosophilidae/physiology , Gene-Environment Interaction , Life History Traits , Animals , Argentina , Drosophilidae/anatomy & histology , Drosophilidae/genetics , Drosophilidae/growth & development , Genotype , Introduced Species , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Larva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...